Whakaoti mō x
x=\frac{2\left(\sqrt{61}-40\right)}{81}\approx -0.79480865
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(9\left(x+1\right)\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(9x+9\right)^{2}=\left(\sqrt{2x+5}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+1.
81x^{2}+162x+81=\left(\sqrt{2x+5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(9x+9\right)^{2}.
81x^{2}+162x+81=2x+5
Tātaihia te \sqrt{2x+5} mā te pū o 2, kia riro ko 2x+5.
81x^{2}+162x+81-2x=5
Tangohia te 2x mai i ngā taha e rua.
81x^{2}+160x+81=5
Pahekotia te 162x me -2x, ka 160x.
81x^{2}+160x+81-5=0
Tangohia te 5 mai i ngā taha e rua.
81x^{2}+160x+76=0
Tangohia te 5 i te 81, ka 76.
x=\frac{-160±\sqrt{160^{2}-4\times 81\times 76}}{2\times 81}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 81 mō a, 160 mō b, me 76 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 81\times 76}}{2\times 81}
Pūrua 160.
x=\frac{-160±\sqrt{25600-324\times 76}}{2\times 81}
Whakareatia -4 ki te 81.
x=\frac{-160±\sqrt{25600-24624}}{2\times 81}
Whakareatia -324 ki te 76.
x=\frac{-160±\sqrt{976}}{2\times 81}
Tāpiri 25600 ki te -24624.
x=\frac{-160±4\sqrt{61}}{2\times 81}
Tuhia te pūtakerua o te 976.
x=\frac{-160±4\sqrt{61}}{162}
Whakareatia 2 ki te 81.
x=\frac{4\sqrt{61}-160}{162}
Nā, me whakaoti te whārite x=\frac{-160±4\sqrt{61}}{162} ina he tāpiri te ±. Tāpiri -160 ki te 4\sqrt{61}.
x=\frac{2\sqrt{61}-80}{81}
Whakawehe -160+4\sqrt{61} ki te 162.
x=\frac{-4\sqrt{61}-160}{162}
Nā, me whakaoti te whārite x=\frac{-160±4\sqrt{61}}{162} ina he tango te ±. Tango 4\sqrt{61} mai i -160.
x=\frac{-2\sqrt{61}-80}{81}
Whakawehe -160-4\sqrt{61} ki te 162.
x=\frac{2\sqrt{61}-80}{81} x=\frac{-2\sqrt{61}-80}{81}
Kua oti te whārite te whakatau.
9\left(\frac{2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{2\sqrt{61}-80}{81}+5}
Whakakapia te \frac{2\sqrt{61}-80}{81} mō te x i te whārite 9\left(x+1\right)=\sqrt{2x+5}.
\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}
Whakarūnātia. Ko te uara x=\frac{2\sqrt{61}-80}{81} kua ngata te whārite.
9\left(\frac{-2\sqrt{61}-80}{81}+1\right)=\sqrt{2\times \frac{-2\sqrt{61}-80}{81}+5}
Whakakapia te \frac{-2\sqrt{61}-80}{81} mō te x i te whārite 9\left(x+1\right)=\sqrt{2x+5}.
-\frac{2}{9}\times 61^{\frac{1}{2}}+\frac{1}{9}=\frac{2}{9}\times 61^{\frac{1}{2}}-\frac{1}{9}
Whakarūnātia. Ko te uara x=\frac{-2\sqrt{61}-80}{81} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\frac{2\sqrt{61}-80}{81}
Ko te whārite 9\left(x+1\right)=\sqrt{2x+5} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}