Whakaoti mō y
y=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
9y^{2}-12y=-4
Tangohia te 12y mai i ngā taha e rua.
9y^{2}-12y+4=0
Me tāpiri te 4 ki ngā taha e rua.
a+b=-12 ab=9\times 4=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9y^{2}+ay+by+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-6 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(9y^{2}-6y\right)+\left(-6y+4\right)
Tuhia anō te 9y^{2}-12y+4 hei \left(9y^{2}-6y\right)+\left(-6y+4\right).
3y\left(3y-2\right)-2\left(3y-2\right)
Tauwehea te 3y i te tuatahi me te -2 i te rōpū tuarua.
\left(3y-2\right)\left(3y-2\right)
Whakatauwehea atu te kīanga pātahi 3y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3y-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
y=\frac{2}{3}
Hei kimi i te otinga whārite, whakaotia te 3y-2=0.
9y^{2}-12y=-4
Tangohia te 12y mai i ngā taha e rua.
9y^{2}-12y+4=0
Me tāpiri te 4 ki ngā taha e rua.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -12 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
Pūrua -12.
y=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
Whakareatia -36 ki te 4.
y=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
Tāpiri 144 ki te -144.
y=-\frac{-12}{2\times 9}
Tuhia te pūtakerua o te 0.
y=\frac{12}{2\times 9}
Ko te tauaro o -12 ko 12.
y=\frac{12}{18}
Whakareatia 2 ki te 9.
y=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9y^{2}-12y=-4
Tangohia te 12y mai i ngā taha e rua.
\frac{9y^{2}-12y}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
y^{2}+\left(-\frac{12}{9}\right)y=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
y^{2}-\frac{4}{3}y=-\frac{4}{9}
Whakahekea te hautanga \frac{-12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{-4+4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{4}{3}y+\frac{4}{9}=0
Tāpiri -\frac{4}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{2}{3}\right)^{2}=0
Tauwehea y^{2}-\frac{4}{3}y+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{2}{3}=0 y-\frac{2}{3}=0
Whakarūnātia.
y=\frac{2}{3} y=\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
y=\frac{2}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}