Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-81 ab=9\times 50=450
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9x^{2}+ax+bx+50. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-450 -2,-225 -3,-150 -5,-90 -6,-75 -9,-50 -10,-45 -15,-30 -18,-25
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 450.
-1-450=-451 -2-225=-227 -3-150=-153 -5-90=-95 -6-75=-81 -9-50=-59 -10-45=-55 -15-30=-45 -18-25=-43
Tātaihia te tapeke mō ia takirua.
a=-75 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -81.
\left(9x^{2}-75x\right)+\left(-6x+50\right)
Tuhia anō te 9x^{2}-81x+50 hei \left(9x^{2}-75x\right)+\left(-6x+50\right).
3x\left(3x-25\right)-2\left(3x-25\right)
Tauwehea te 3x i te tuatahi me te -2 i te rōpū tuarua.
\left(3x-25\right)\left(3x-2\right)
Whakatauwehea atu te kīanga pātahi 3x-25 mā te whakamahi i te āhuatanga tātai tohatoha.
9x^{2}-81x+50=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-81\right)±\sqrt{\left(-81\right)^{2}-4\times 9\times 50}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-81\right)±\sqrt{6561-4\times 9\times 50}}{2\times 9}
Pūrua -81.
x=\frac{-\left(-81\right)±\sqrt{6561-36\times 50}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-81\right)±\sqrt{6561-1800}}{2\times 9}
Whakareatia -36 ki te 50.
x=\frac{-\left(-81\right)±\sqrt{4761}}{2\times 9}
Tāpiri 6561 ki te -1800.
x=\frac{-\left(-81\right)±69}{2\times 9}
Tuhia te pūtakerua o te 4761.
x=\frac{81±69}{2\times 9}
Ko te tauaro o -81 ko 81.
x=\frac{81±69}{18}
Whakareatia 2 ki te 9.
x=\frac{150}{18}
Nā, me whakaoti te whārite x=\frac{81±69}{18} ina he tāpiri te ±. Tāpiri 81 ki te 69.
x=\frac{25}{3}
Whakahekea te hautanga \frac{150}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{12}{18}
Nā, me whakaoti te whārite x=\frac{81±69}{18} ina he tango te ±. Tango 69 mai i 81.
x=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}-81x+50=9\left(x-\frac{25}{3}\right)\left(x-\frac{2}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{25}{3} mō te x_{1} me te \frac{2}{3} mō te x_{2}.
9x^{2}-81x+50=9\times \frac{3x-25}{3}\left(x-\frac{2}{3}\right)
Tango \frac{25}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-81x+50=9\times \frac{3x-25}{3}\times \frac{3x-2}{3}
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-81x+50=9\times \frac{\left(3x-25\right)\left(3x-2\right)}{3\times 3}
Whakareatia \frac{3x-25}{3} ki te \frac{3x-2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-81x+50=9\times \frac{\left(3x-25\right)\left(3x-2\right)}{9}
Whakareatia 3 ki te 3.
9x^{2}-81x+50=\left(3x-25\right)\left(3x-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.