Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3x-2\right)\left(3x+2\right)=0
Whakaarohia te 9x^{2}-4. Tuhia anō te 9x^{2}-4 hei \left(3x\right)^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{3} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te 3x+2=0.
9x^{2}=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{2}{3} x=-\frac{2}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9x^{2}-4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-4\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-4\right)}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\left(-4\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{144}}{2\times 9}
Whakareatia -36 ki te -4.
x=\frac{0±12}{2\times 9}
Tuhia te pūtakerua o te 144.
x=\frac{0±12}{18}
Whakareatia 2 ki te 9.
x=\frac{2}{3}
Nā, me whakaoti te whārite x=\frac{0±12}{18} ina he tāpiri te ±. Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{2}{3}
Nā, me whakaoti te whārite x=\frac{0±12}{18} ina he tango te ±. Whakahekea te hautanga \frac{-12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{2}{3} x=-\frac{2}{3}
Kua oti te whārite te whakatau.