Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-30 ab=9\times 25=225
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Tātaihia te tapeke mō ia takirua.
a=-15 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
Tuhia anō te 9x^{2}-30x+25 hei \left(9x^{2}-15x\right)+\left(-15x+25\right).
3x\left(3x-5\right)-5\left(3x-5\right)
Tauwehea te 3x i te tuatahi me te -5 i te rōpū tuarua.
\left(3x-5\right)\left(3x-5\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{5}{3}
Hei kimi i te otinga whārite, whakaotia te 3x-5=0.
9x^{2}-30x+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -30 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
Whakareatia -36 ki te 25.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
Tāpiri 900 ki te -900.
x=-\frac{-30}{2\times 9}
Tuhia te pūtakerua o te 0.
x=\frac{30}{2\times 9}
Ko te tauaro o -30 ko 30.
x=\frac{30}{18}
Whakareatia 2 ki te 9.
x=\frac{5}{3}
Whakahekea te hautanga \frac{30}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}-30x+25=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}-30x+25-25=-25
Me tango 25 mai i ngā taha e rua o te whārite.
9x^{2}-30x=-25
Mā te tango i te 25 i a ia ake anō ka toe ko te 0.
\frac{9x^{2}-30x}{9}=-\frac{25}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{30}{9}\right)x=-\frac{25}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{10}{3}x=-\frac{25}{9}
Whakahekea te hautanga \frac{-30}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(-\frac{5}{3}\right)^{2}
Whakawehea te -\frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{3}. Nā, tāpiria te pūrua o te -\frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{-25+25}{9}
Pūruatia -\frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{10}{3}x+\frac{25}{9}=0
Tāpiri -\frac{25}{9} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{3}\right)^{2}=0
Tauwehea x^{2}-\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{3}=0 x-\frac{5}{3}=0
Whakarūnātia.
x=\frac{5}{3} x=\frac{5}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
x=\frac{5}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.