Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{25}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{5}{3}i x=-\frac{5}{3}i
Kua oti te whārite te whakatau.
9x^{2}+25=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 25}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 25}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\times 25}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{-900}}{2\times 9}
Whakareatia -36 ki te 25.
x=\frac{0±30i}{2\times 9}
Tuhia te pūtakerua o te -900.
x=\frac{0±30i}{18}
Whakareatia 2 ki te 9.
x=\frac{5}{3}i
Nā, me whakaoti te whārite x=\frac{0±30i}{18} ina he tāpiri te ±.
x=-\frac{5}{3}i
Nā, me whakaoti te whārite x=\frac{0±30i}{18} ina he tango te ±.
x=\frac{5}{3}i x=-\frac{5}{3}i
Kua oti te whārite te whakatau.