Whakaoti mō x
x=\frac{2\sqrt{186}-25}{3}\approx 0.758787798
x=\frac{-2\sqrt{186}-25}{3}\approx -17.425454465
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+150x-119=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-150±\sqrt{150^{2}-4\times 9\left(-119\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 150 mō b, me -119 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\times 9\left(-119\right)}}{2\times 9}
Pūrua 150.
x=\frac{-150±\sqrt{22500-36\left(-119\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-150±\sqrt{22500+4284}}{2\times 9}
Whakareatia -36 ki te -119.
x=\frac{-150±\sqrt{26784}}{2\times 9}
Tāpiri 22500 ki te 4284.
x=\frac{-150±12\sqrt{186}}{2\times 9}
Tuhia te pūtakerua o te 26784.
x=\frac{-150±12\sqrt{186}}{18}
Whakareatia 2 ki te 9.
x=\frac{12\sqrt{186}-150}{18}
Nā, me whakaoti te whārite x=\frac{-150±12\sqrt{186}}{18} ina he tāpiri te ±. Tāpiri -150 ki te 12\sqrt{186}.
x=\frac{2\sqrt{186}-25}{3}
Whakawehe -150+12\sqrt{186} ki te 18.
x=\frac{-12\sqrt{186}-150}{18}
Nā, me whakaoti te whārite x=\frac{-150±12\sqrt{186}}{18} ina he tango te ±. Tango 12\sqrt{186} mai i -150.
x=\frac{-2\sqrt{186}-25}{3}
Whakawehe -150-12\sqrt{186} ki te 18.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
Kua oti te whārite te whakatau.
9x^{2}+150x-119=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}+150x-119-\left(-119\right)=-\left(-119\right)
Me tāpiri 119 ki ngā taha e rua o te whārite.
9x^{2}+150x=-\left(-119\right)
Mā te tango i te -119 i a ia ake anō ka toe ko te 0.
9x^{2}+150x=119
Tango -119 mai i 0.
\frac{9x^{2}+150x}{9}=\frac{119}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{150}{9}x=\frac{119}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{50}{3}x=\frac{119}{9}
Whakahekea te hautanga \frac{150}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{50}{3}x+\left(\frac{25}{3}\right)^{2}=\frac{119}{9}+\left(\frac{25}{3}\right)^{2}
Whakawehea te \frac{50}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{3}. Nā, tāpiria te pūrua o te \frac{25}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{119+625}{9}
Pūruatia \frac{25}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{50}{3}x+\frac{625}{9}=\frac{248}{3}
Tāpiri \frac{119}{9} ki te \frac{625}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{25}{3}\right)^{2}=\frac{248}{3}
Tauwehea x^{2}+\frac{50}{3}x+\frac{625}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{3}\right)^{2}}=\sqrt{\frac{248}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{3}=\frac{2\sqrt{186}}{3} x+\frac{25}{3}=-\frac{2\sqrt{186}}{3}
Whakarūnātia.
x=\frac{2\sqrt{186}-25}{3} x=\frac{-2\sqrt{186}-25}{3}
Me tango \frac{25}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}