Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=14 ab=9\left(-8\right)=-72
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-4 b=18
Ko te otinga te takirua ka hoatu i te tapeke 14.
\left(9x^{2}-4x\right)+\left(18x-8\right)
Tuhia anō te 9x^{2}+14x-8 hei \left(9x^{2}-4x\right)+\left(18x-8\right).
x\left(9x-4\right)+2\left(9x-4\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(9x-4\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 9x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{9} x=-2
Hei kimi otinga whārite, me whakaoti te 9x-4=0 me te x+2=0.
9x^{2}+14x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{14^{2}-4\times 9\left(-8\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 14 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 9\left(-8\right)}}{2\times 9}
Pūrua 14.
x=\frac{-14±\sqrt{196-36\left(-8\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-14±\sqrt{196+288}}{2\times 9}
Whakareatia -36 ki te -8.
x=\frac{-14±\sqrt{484}}{2\times 9}
Tāpiri 196 ki te 288.
x=\frac{-14±22}{2\times 9}
Tuhia te pūtakerua o te 484.
x=\frac{-14±22}{18}
Whakareatia 2 ki te 9.
x=\frac{8}{18}
Nā, me whakaoti te whārite x=\frac{-14±22}{18} ina he tāpiri te ±. Tāpiri -14 ki te 22.
x=\frac{4}{9}
Whakahekea te hautanga \frac{8}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{36}{18}
Nā, me whakaoti te whārite x=\frac{-14±22}{18} ina he tango te ±. Tango 22 mai i -14.
x=-2
Whakawehe -36 ki te 18.
x=\frac{4}{9} x=-2
Kua oti te whārite te whakatau.
9x^{2}+14x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}+14x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
9x^{2}+14x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
9x^{2}+14x=8
Tango -8 mai i 0.
\frac{9x^{2}+14x}{9}=\frac{8}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{14}{9}x=\frac{8}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{14}{9}x+\left(\frac{7}{9}\right)^{2}=\frac{8}{9}+\left(\frac{7}{9}\right)^{2}
Whakawehea te \frac{14}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{9}. Nā, tāpiria te pūrua o te \frac{7}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{14}{9}x+\frac{49}{81}=\frac{8}{9}+\frac{49}{81}
Pūruatia \frac{7}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{14}{9}x+\frac{49}{81}=\frac{121}{81}
Tāpiri \frac{8}{9} ki te \frac{49}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{9}\right)^{2}=\frac{121}{81}
Tauwehea x^{2}+\frac{14}{9}x+\frac{49}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{9}\right)^{2}}=\sqrt{\frac{121}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{9}=\frac{11}{9} x+\frac{7}{9}=-\frac{11}{9}
Whakarūnātia.
x=\frac{4}{9} x=-2
Me tango \frac{7}{9} mai i ngā taha e rua o te whārite.