Whakaoti mō t
t=\frac{\sqrt{35}}{3}+2\approx 3.972026594
t=-\frac{\sqrt{35}}{3}+2\approx 0.027973406
Tohaina
Kua tāruatia ki te papatopenga
9t^{2}-36t+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -36 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-36\right)±\sqrt{1296-4\times 9}}{2\times 9}
Pūrua -36.
t=\frac{-\left(-36\right)±\sqrt{1296-36}}{2\times 9}
Whakareatia -4 ki te 9.
t=\frac{-\left(-36\right)±\sqrt{1260}}{2\times 9}
Tāpiri 1296 ki te -36.
t=\frac{-\left(-36\right)±6\sqrt{35}}{2\times 9}
Tuhia te pūtakerua o te 1260.
t=\frac{36±6\sqrt{35}}{2\times 9}
Ko te tauaro o -36 ko 36.
t=\frac{36±6\sqrt{35}}{18}
Whakareatia 2 ki te 9.
t=\frac{6\sqrt{35}+36}{18}
Nā, me whakaoti te whārite t=\frac{36±6\sqrt{35}}{18} ina he tāpiri te ±. Tāpiri 36 ki te 6\sqrt{35}.
t=\frac{\sqrt{35}}{3}+2
Whakawehe 36+6\sqrt{35} ki te 18.
t=\frac{36-6\sqrt{35}}{18}
Nā, me whakaoti te whārite t=\frac{36±6\sqrt{35}}{18} ina he tango te ±. Tango 6\sqrt{35} mai i 36.
t=-\frac{\sqrt{35}}{3}+2
Whakawehe 36-6\sqrt{35} ki te 18.
t=\frac{\sqrt{35}}{3}+2 t=-\frac{\sqrt{35}}{3}+2
Kua oti te whārite te whakatau.
9t^{2}-36t+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9t^{2}-36t+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
9t^{2}-36t=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{9t^{2}-36t}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
t^{2}+\left(-\frac{36}{9}\right)t=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
t^{2}-4t=-\frac{1}{9}
Whakawehe -36 ki te 9.
t^{2}-4t+\left(-2\right)^{2}=-\frac{1}{9}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-4t+4=-\frac{1}{9}+4
Pūrua -2.
t^{2}-4t+4=\frac{35}{9}
Tāpiri -\frac{1}{9} ki te 4.
\left(t-2\right)^{2}=\frac{35}{9}
Tauwehea t^{2}-4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{\frac{35}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-2=\frac{\sqrt{35}}{3} t-2=-\frac{\sqrt{35}}{3}
Whakarūnātia.
t=\frac{\sqrt{35}}{3}+2 t=-\frac{\sqrt{35}}{3}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}