Whakaoti mō n
n=\frac{1+\sqrt{215}i}{54}\approx 0.018518519+0.271534783i
n=\frac{-\sqrt{215}i+1}{54}\approx 0.018518519-0.271534783i
Tohaina
Kua tāruatia ki te papatopenga
27n^{2}=n-4+2
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3n^{2}.
27n^{2}=n-2
Tāpirihia te -4 ki te 2, ka -2.
27n^{2}-n=-2
Tangohia te n mai i ngā taha e rua.
27n^{2}-n+2=0
Me tāpiri te 2 ki ngā taha e rua.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 27\times 2}}{2\times 27}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 27 mō a, -1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1-108\times 2}}{2\times 27}
Whakareatia -4 ki te 27.
n=\frac{-\left(-1\right)±\sqrt{1-216}}{2\times 27}
Whakareatia -108 ki te 2.
n=\frac{-\left(-1\right)±\sqrt{-215}}{2\times 27}
Tāpiri 1 ki te -216.
n=\frac{-\left(-1\right)±\sqrt{215}i}{2\times 27}
Tuhia te pūtakerua o te -215.
n=\frac{1±\sqrt{215}i}{2\times 27}
Ko te tauaro o -1 ko 1.
n=\frac{1±\sqrt{215}i}{54}
Whakareatia 2 ki te 27.
n=\frac{1+\sqrt{215}i}{54}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{215}i}{54} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{215}.
n=\frac{-\sqrt{215}i+1}{54}
Nā, me whakaoti te whārite n=\frac{1±\sqrt{215}i}{54} ina he tango te ±. Tango i\sqrt{215} mai i 1.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
Kua oti te whārite te whakatau.
27n^{2}=n-4+2
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3n^{2}.
27n^{2}=n-2
Tāpirihia te -4 ki te 2, ka -2.
27n^{2}-n=-2
Tangohia te n mai i ngā taha e rua.
\frac{27n^{2}-n}{27}=-\frac{2}{27}
Whakawehea ngā taha e rua ki te 27.
n^{2}-\frac{1}{27}n=-\frac{2}{27}
Mā te whakawehe ki te 27 ka wetekia te whakareanga ki te 27.
n^{2}-\frac{1}{27}n+\left(-\frac{1}{54}\right)^{2}=-\frac{2}{27}+\left(-\frac{1}{54}\right)^{2}
Whakawehea te -\frac{1}{27}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{54}. Nā, tāpiria te pūrua o te -\frac{1}{54} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{2}{27}+\frac{1}{2916}
Pūruatia -\frac{1}{54} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{1}{27}n+\frac{1}{2916}=-\frac{215}{2916}
Tāpiri -\frac{2}{27} ki te \frac{1}{2916} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{1}{54}\right)^{2}=-\frac{215}{2916}
Tauwehea n^{2}-\frac{1}{27}n+\frac{1}{2916}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{54}\right)^{2}}=\sqrt{-\frac{215}{2916}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{1}{54}=\frac{\sqrt{215}i}{54} n-\frac{1}{54}=-\frac{\sqrt{215}i}{54}
Whakarūnātia.
n=\frac{1+\sqrt{215}i}{54} n=\frac{-\sqrt{215}i+1}{54}
Me tāpiri \frac{1}{54} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}