Whakaoti mō x
x = \frac{\sqrt{91} + 1}{3} \approx 3.513130671
x=\frac{1-\sqrt{91}}{3}\approx -2.846464005
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}x^{2}-x=15
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{3}{2}x^{2}-x-15=15-15
Me tango 15 mai i ngā taha e rua o te whārite.
\frac{3}{2}x^{2}-x-15=0
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{3}{2}\left(-15\right)}}{2\times \frac{3}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3}{2} mō a, -1 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-6\left(-15\right)}}{2\times \frac{3}{2}}
Whakareatia -4 ki te \frac{3}{2}.
x=\frac{-\left(-1\right)±\sqrt{1+90}}{2\times \frac{3}{2}}
Whakareatia -6 ki te -15.
x=\frac{-\left(-1\right)±\sqrt{91}}{2\times \frac{3}{2}}
Tāpiri 1 ki te 90.
x=\frac{1±\sqrt{91}}{2\times \frac{3}{2}}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{91}}{3}
Whakareatia 2 ki te \frac{3}{2}.
x=\frac{\sqrt{91}+1}{3}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{91}}{3} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{91}.
x=\frac{1-\sqrt{91}}{3}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{91}}{3} ina he tango te ±. Tango \sqrt{91} mai i 1.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
Kua oti te whārite te whakatau.
\frac{3}{2}x^{2}-x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{15}{\frac{3}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{15}{\frac{3}{2}}
Mā te whakawehe ki te \frac{3}{2} ka wetekia te whakareanga ki te \frac{3}{2}.
x^{2}-\frac{2}{3}x=\frac{15}{\frac{3}{2}}
Whakawehe -1 ki te \frac{3}{2} mā te whakarea -1 ki te tau huripoki o \frac{3}{2}.
x^{2}-\frac{2}{3}x=10
Whakawehe 15 ki te \frac{3}{2} mā te whakarea 15 ki te tau huripoki o \frac{3}{2}.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=10+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=10+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{91}{9}
Tāpiri 10 ki te \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{91}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{91}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{\sqrt{91}}{3} x-\frac{1}{3}=-\frac{\sqrt{91}}{3}
Whakarūnātia.
x=\frac{\sqrt{91}+1}{3} x=\frac{1-\sqrt{91}}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}