Whakaoti mō m
m=-2
m=5
Tohaina
Kua tāruatia ki te papatopenga
9+3m-m^{2}=-1
Tangohia te m^{2} mai i ngā taha e rua.
9+3m-m^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
10+3m-m^{2}=0
Tāpirihia te 9 ki te 1, ka 10.
-m^{2}+3m+10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-10=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -m^{2}+am+bm+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=5 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-m^{2}+5m\right)+\left(-2m+10\right)
Tuhia anō te -m^{2}+3m+10 hei \left(-m^{2}+5m\right)+\left(-2m+10\right).
-m\left(m-5\right)-2\left(m-5\right)
Tauwehea te -m i te tuatahi me te -2 i te rōpū tuarua.
\left(m-5\right)\left(-m-2\right)
Whakatauwehea atu te kīanga pātahi m-5 mā te whakamahi i te āhuatanga tātai tohatoha.
m=5 m=-2
Hei kimi otinga whārite, me whakaoti te m-5=0 me te -m-2=0.
9+3m-m^{2}=-1
Tangohia te m^{2} mai i ngā taha e rua.
9+3m-m^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
10+3m-m^{2}=0
Tāpirihia te 9 ki te 1, ka 10.
-m^{2}+3m+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Pūrua 3.
m=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
m=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
Whakareatia 4 ki te 10.
m=\frac{-3±\sqrt{49}}{2\left(-1\right)}
Tāpiri 9 ki te 40.
m=\frac{-3±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
m=\frac{-3±7}{-2}
Whakareatia 2 ki te -1.
m=\frac{4}{-2}
Nā, me whakaoti te whārite m=\frac{-3±7}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 7.
m=-2
Whakawehe 4 ki te -2.
m=-\frac{10}{-2}
Nā, me whakaoti te whārite m=\frac{-3±7}{-2} ina he tango te ±. Tango 7 mai i -3.
m=5
Whakawehe -10 ki te -2.
m=-2 m=5
Kua oti te whārite te whakatau.
9+3m-m^{2}=-1
Tangohia te m^{2} mai i ngā taha e rua.
3m-m^{2}=-1-9
Tangohia te 9 mai i ngā taha e rua.
3m-m^{2}=-10
Tangohia te 9 i te -1, ka -10.
-m^{2}+3m=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-m^{2}+3m}{-1}=-\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
m^{2}+\frac{3}{-1}m=-\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
m^{2}-3m=-\frac{10}{-1}
Whakawehe 3 ki te -1.
m^{2}-3m=10
Whakawehe -10 ki te -1.
m^{2}-3m+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-3m+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-3m+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(m-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea m^{2}-3m+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{3}{2}=\frac{7}{2} m-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
m=5 m=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}