Whakaoti mō m
m = -\frac{3}{2} = -1\frac{1}{2} = -1.5
m=-3
Tohaina
Kua tāruatia ki te papatopenga
m\times 9+3mm=m^{2}-9
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te m.
m\times 9+3m^{2}=m^{2}-9
Whakareatia te m ki te m, ka m^{2}.
m\times 9+3m^{2}-m^{2}=-9
Tangohia te m^{2} mai i ngā taha e rua.
m\times 9+2m^{2}=-9
Pahekotia te 3m^{2} me -m^{2}, ka 2m^{2}.
m\times 9+2m^{2}+9=0
Me tāpiri te 9 ki ngā taha e rua.
2m^{2}+9m+9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=9 ab=2\times 9=18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2m^{2}+am+bm+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=3 b=6
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(2m^{2}+3m\right)+\left(6m+9\right)
Tuhia anō te 2m^{2}+9m+9 hei \left(2m^{2}+3m\right)+\left(6m+9\right).
m\left(2m+3\right)+3\left(2m+3\right)
Tauwehea te m i te tuatahi me te 3 i te rōpū tuarua.
\left(2m+3\right)\left(m+3\right)
Whakatauwehea atu te kīanga pātahi 2m+3 mā te whakamahi i te āhuatanga tātai tohatoha.
m=-\frac{3}{2} m=-3
Hei kimi otinga whārite, me whakaoti te 2m+3=0 me te m+3=0.
m\times 9+3mm=m^{2}-9
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te m.
m\times 9+3m^{2}=m^{2}-9
Whakareatia te m ki te m, ka m^{2}.
m\times 9+3m^{2}-m^{2}=-9
Tangohia te m^{2} mai i ngā taha e rua.
m\times 9+2m^{2}=-9
Pahekotia te 3m^{2} me -m^{2}, ka 2m^{2}.
m\times 9+2m^{2}+9=0
Me tāpiri te 9 ki ngā taha e rua.
2m^{2}+9m+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-9±\sqrt{9^{2}-4\times 2\times 9}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 9 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-9±\sqrt{81-4\times 2\times 9}}{2\times 2}
Pūrua 9.
m=\frac{-9±\sqrt{81-8\times 9}}{2\times 2}
Whakareatia -4 ki te 2.
m=\frac{-9±\sqrt{81-72}}{2\times 2}
Whakareatia -8 ki te 9.
m=\frac{-9±\sqrt{9}}{2\times 2}
Tāpiri 81 ki te -72.
m=\frac{-9±3}{2\times 2}
Tuhia te pūtakerua o te 9.
m=\frac{-9±3}{4}
Whakareatia 2 ki te 2.
m=-\frac{6}{4}
Nā, me whakaoti te whārite m=\frac{-9±3}{4} ina he tāpiri te ±. Tāpiri -9 ki te 3.
m=-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m=-\frac{12}{4}
Nā, me whakaoti te whārite m=\frac{-9±3}{4} ina he tango te ±. Tango 3 mai i -9.
m=-3
Whakawehe -12 ki te 4.
m=-\frac{3}{2} m=-3
Kua oti te whārite te whakatau.
m\times 9+3mm=m^{2}-9
Tē taea kia ōrite te tāupe m ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te m.
m\times 9+3m^{2}=m^{2}-9
Whakareatia te m ki te m, ka m^{2}.
m\times 9+3m^{2}-m^{2}=-9
Tangohia te m^{2} mai i ngā taha e rua.
m\times 9+2m^{2}=-9
Pahekotia te 3m^{2} me -m^{2}, ka 2m^{2}.
2m^{2}+9m=-9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2m^{2}+9m}{2}=-\frac{9}{2}
Whakawehea ngā taha e rua ki te 2.
m^{2}+\frac{9}{2}m=-\frac{9}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m^{2}+\frac{9}{2}m+\left(\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(\frac{9}{4}\right)^{2}
Whakawehea te \frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{4}. Nā, tāpiria te pūrua o te \frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+\frac{9}{2}m+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Pūruatia \frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+\frac{9}{2}m+\frac{81}{16}=\frac{9}{16}
Tāpiri -\frac{9}{2} ki te \frac{81}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m+\frac{9}{4}\right)^{2}=\frac{9}{16}
Tauwehea m^{2}+\frac{9}{2}m+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{9}{4}=\frac{3}{4} m+\frac{9}{4}=-\frac{3}{4}
Whakarūnātia.
m=-\frac{3}{2} m=-3
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}