Tauwehe
\left(2v+3\right)^{2}
Aromātai
\left(2v+3\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
4v^{2}+12v+9
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=4\times 9=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4v^{2}+av+bv+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(4v^{2}+6v\right)+\left(6v+9\right)
Tuhia anō te 4v^{2}+12v+9 hei \left(4v^{2}+6v\right)+\left(6v+9\right).
2v\left(2v+3\right)+3\left(2v+3\right)
Tauwehea te 2v i te tuatahi me te 3 i te rōpū tuarua.
\left(2v+3\right)\left(2v+3\right)
Whakatauwehea atu te kīanga pātahi 2v+3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2v+3\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(4v^{2}+12v+9)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(4,12,9)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{4v^{2}}=2v
Kimihia te pūtakerua o te kīanga tau ārahi, 4v^{2}.
\sqrt{9}=3
Kimihia te pūtakerua o te kīanga tau autō, 9.
\left(2v+3\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
4v^{2}+12v+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
Pūrua 12.
v=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
Whakareatia -4 ki te 4.
v=\frac{-12±\sqrt{144-144}}{2\times 4}
Whakareatia -16 ki te 9.
v=\frac{-12±\sqrt{0}}{2\times 4}
Tāpiri 144 ki te -144.
v=\frac{-12±0}{2\times 4}
Tuhia te pūtakerua o te 0.
v=\frac{-12±0}{8}
Whakareatia 2 ki te 4.
4v^{2}+12v+9=4\left(v-\left(-\frac{3}{2}\right)\right)\left(v-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{3}{2} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
4v^{2}+12v+9=4\left(v+\frac{3}{2}\right)\left(v+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4v^{2}+12v+9=4\times \frac{2v+3}{2}\left(v+\frac{3}{2}\right)
Tāpiri \frac{3}{2} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4v^{2}+12v+9=4\times \frac{2v+3}{2}\times \frac{2v+3}{2}
Tāpiri \frac{3}{2} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4v^{2}+12v+9=4\times \frac{\left(2v+3\right)\left(2v+3\right)}{2\times 2}
Whakareatia \frac{2v+3}{2} ki te \frac{2v+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4v^{2}+12v+9=4\times \frac{\left(2v+3\right)\left(2v+3\right)}{4}
Whakareatia 2 ki te 2.
4v^{2}+12v+9=\left(2v+3\right)\left(2v+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}