Aromātai
\frac{58}{3}\approx 19.333333333
Tauwehe
\frac{2 \cdot 29}{3} = 19\frac{1}{3} = 19.333333333333332
Tohaina
Kua tāruatia ki te papatopenga
\frac{27+1}{3}\times \frac{2\times 14+1}{14}
Whakareatia te 9 ki te 3, ka 27.
\frac{28}{3}\times \frac{2\times 14+1}{14}
Tāpirihia te 27 ki te 1, ka 28.
\frac{28}{3}\times \frac{28+1}{14}
Whakareatia te 2 ki te 14, ka 28.
\frac{28}{3}\times \frac{29}{14}
Tāpirihia te 28 ki te 1, ka 29.
\frac{28\times 29}{3\times 14}
Me whakarea te \frac{28}{3} ki te \frac{29}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{812}{42}
Mahia ngā whakarea i roto i te hautanga \frac{28\times 29}{3\times 14}.
\frac{58}{3}
Whakahekea te hautanga \frac{812}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}