Aromātai
32x-28y-7z
Whakaroha
32x-28y-7z
Tohaina
Kua tāruatia ki te papatopenga
8x-15y-6z-\left(-12x\right)-\left(-13x+12y\right)-\left(x+y+z\right)
Hei kimi i te tauaro o 15y+6z-12x, kimihia te tauaro o ia taurangi.
8x-15y-6z+12x-\left(-13x+12y\right)-\left(x+y+z\right)
Ko te tauaro o -12x ko 12x.
20x-15y-6z-\left(-13x+12y\right)-\left(x+y+z\right)
Pahekotia te 8x me 12x, ka 20x.
20x-15y-6z-\left(-13x\right)-12y-\left(x+y+z\right)
Hei kimi i te tauaro o -13x+12y, kimihia te tauaro o ia taurangi.
20x-15y-6z+13x-12y-\left(x+y+z\right)
Ko te tauaro o -13x ko 13x.
33x-15y-6z-12y-\left(x+y+z\right)
Pahekotia te 20x me 13x, ka 33x.
33x-27y-6z-\left(x+y+z\right)
Pahekotia te -15y me -12y, ka -27y.
33x-27y-6z-x-y-z
Hei kimi i te tauaro o x+y+z, kimihia te tauaro o ia taurangi.
32x-27y-6z-y-z
Pahekotia te 33x me -x, ka 32x.
32x-28y-6z-z
Pahekotia te -27y me -y, ka -28y.
32x-28y-7z
Pahekotia te -6z me -z, ka -7z.
8x-15y-6z-\left(-12x\right)-\left(-13x+12y\right)-\left(x+y+z\right)
Hei kimi i te tauaro o 15y+6z-12x, kimihia te tauaro o ia taurangi.
8x-15y-6z+12x-\left(-13x+12y\right)-\left(x+y+z\right)
Ko te tauaro o -12x ko 12x.
20x-15y-6z-\left(-13x+12y\right)-\left(x+y+z\right)
Pahekotia te 8x me 12x, ka 20x.
20x-15y-6z-\left(-13x\right)-12y-\left(x+y+z\right)
Hei kimi i te tauaro o -13x+12y, kimihia te tauaro o ia taurangi.
20x-15y-6z+13x-12y-\left(x+y+z\right)
Ko te tauaro o -13x ko 13x.
33x-15y-6z-12y-\left(x+y+z\right)
Pahekotia te 20x me 13x, ka 33x.
33x-27y-6z-\left(x+y+z\right)
Pahekotia te -15y me -12y, ka -27y.
33x-27y-6z-x-y-z
Hei kimi i te tauaro o x+y+z, kimihia te tauaro o ia taurangi.
32x-27y-6z-y-z
Pahekotia te 33x me -x, ka 32x.
32x-28y-6z-z
Pahekotia te -27y me -y, ka -28y.
32x-28y-7z
Pahekotia te -6z me -z, ka -7z.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}