Whakaoti mō t
t=\frac{3\sqrt{2}i}{86}+\frac{19}{43}\approx 0.441860465+0.049333031i
t=-\frac{3\sqrt{2}i}{86}+\frac{19}{43}\approx 0.441860465-0.049333031i
Tohaina
Kua tāruatia ki te papatopenga
86t^{2}-76t+17=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 86\times 17}}{2\times 86}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 86 mō a, -76 mō b, me 17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-76\right)±\sqrt{5776-4\times 86\times 17}}{2\times 86}
Pūrua -76.
t=\frac{-\left(-76\right)±\sqrt{5776-344\times 17}}{2\times 86}
Whakareatia -4 ki te 86.
t=\frac{-\left(-76\right)±\sqrt{5776-5848}}{2\times 86}
Whakareatia -344 ki te 17.
t=\frac{-\left(-76\right)±\sqrt{-72}}{2\times 86}
Tāpiri 5776 ki te -5848.
t=\frac{-\left(-76\right)±6\sqrt{2}i}{2\times 86}
Tuhia te pūtakerua o te -72.
t=\frac{76±6\sqrt{2}i}{2\times 86}
Ko te tauaro o -76 ko 76.
t=\frac{76±6\sqrt{2}i}{172}
Whakareatia 2 ki te 86.
t=\frac{76+6\sqrt{2}i}{172}
Nā, me whakaoti te whārite t=\frac{76±6\sqrt{2}i}{172} ina he tāpiri te ±. Tāpiri 76 ki te 6i\sqrt{2}.
t=\frac{3\sqrt{2}i}{86}+\frac{19}{43}
Whakawehe 76+6i\sqrt{2} ki te 172.
t=\frac{-6\sqrt{2}i+76}{172}
Nā, me whakaoti te whārite t=\frac{76±6\sqrt{2}i}{172} ina he tango te ±. Tango 6i\sqrt{2} mai i 76.
t=-\frac{3\sqrt{2}i}{86}+\frac{19}{43}
Whakawehe 76-6i\sqrt{2} ki te 172.
t=\frac{3\sqrt{2}i}{86}+\frac{19}{43} t=-\frac{3\sqrt{2}i}{86}+\frac{19}{43}
Kua oti te whārite te whakatau.
86t^{2}-76t+17=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
86t^{2}-76t+17-17=-17
Me tango 17 mai i ngā taha e rua o te whārite.
86t^{2}-76t=-17
Mā te tango i te 17 i a ia ake anō ka toe ko te 0.
\frac{86t^{2}-76t}{86}=-\frac{17}{86}
Whakawehea ngā taha e rua ki te 86.
t^{2}+\left(-\frac{76}{86}\right)t=-\frac{17}{86}
Mā te whakawehe ki te 86 ka wetekia te whakareanga ki te 86.
t^{2}-\frac{38}{43}t=-\frac{17}{86}
Whakahekea te hautanga \frac{-76}{86} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t^{2}-\frac{38}{43}t+\left(-\frac{19}{43}\right)^{2}=-\frac{17}{86}+\left(-\frac{19}{43}\right)^{2}
Whakawehea te -\frac{38}{43}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{43}. Nā, tāpiria te pūrua o te -\frac{19}{43} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{38}{43}t+\frac{361}{1849}=-\frac{17}{86}+\frac{361}{1849}
Pūruatia -\frac{19}{43} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{38}{43}t+\frac{361}{1849}=-\frac{9}{3698}
Tāpiri -\frac{17}{86} ki te \frac{361}{1849} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{19}{43}\right)^{2}=-\frac{9}{3698}
Tauwehea t^{2}-\frac{38}{43}t+\frac{361}{1849}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{19}{43}\right)^{2}}=\sqrt{-\frac{9}{3698}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{19}{43}=\frac{3\sqrt{2}i}{86} t-\frac{19}{43}=-\frac{3\sqrt{2}i}{86}
Whakarūnātia.
t=\frac{3\sqrt{2}i}{86}+\frac{19}{43} t=-\frac{3\sqrt{2}i}{86}+\frac{19}{43}
Me tāpiri \frac{19}{43} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}