Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-10=85
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}=85+10
Me tāpiri te 10 ki ngā taha e rua.
2x^{2}=95
Tāpirihia te 85 ki te 10, ka 95.
x^{2}=\frac{95}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{\sqrt{190}}{2} x=-\frac{\sqrt{190}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x^{2}-10=85
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}-10-85=0
Tangohia te 85 mai i ngā taha e rua.
2x^{2}-95=0
Tangohia te 85 i te -10, ka -95.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-95\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -95 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-95\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-95\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{760}}{2\times 2}
Whakareatia -8 ki te -95.
x=\frac{0±2\sqrt{190}}{2\times 2}
Tuhia te pūtakerua o te 760.
x=\frac{0±2\sqrt{190}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{190}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{190}}{4} ina he tāpiri te ±.
x=-\frac{\sqrt{190}}{2}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{190}}{4} ina he tango te ±.
x=\frac{\sqrt{190}}{2} x=-\frac{\sqrt{190}}{2}
Kua oti te whārite te whakatau.