Tauwehe
14\left(2x-3\right)\left(3x+7\right)
Aromātai
84x^{2}+70x-294
Graph
Tohaina
Kua tāruatia ki te papatopenga
14\left(6x^{2}+5x-21\right)
Tauwehea te 14.
a+b=5 ab=6\left(-21\right)=-126
Whakaarohia te 6x^{2}+5x-21. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx-21. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,126 -2,63 -3,42 -6,21 -7,18 -9,14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -126.
-1+126=125 -2+63=61 -3+42=39 -6+21=15 -7+18=11 -9+14=5
Tātaihia te tapeke mō ia takirua.
a=-9 b=14
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(6x^{2}-9x\right)+\left(14x-21\right)
Tuhia anō te 6x^{2}+5x-21 hei \left(6x^{2}-9x\right)+\left(14x-21\right).
3x\left(2x-3\right)+7\left(2x-3\right)
Tauwehea te 3x i te tuatahi me te 7 i te rōpū tuarua.
\left(2x-3\right)\left(3x+7\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
14\left(2x-3\right)\left(3x+7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
84x^{2}+70x-294=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-70±\sqrt{70^{2}-4\times 84\left(-294\right)}}{2\times 84}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-70±\sqrt{4900-4\times 84\left(-294\right)}}{2\times 84}
Pūrua 70.
x=\frac{-70±\sqrt{4900-336\left(-294\right)}}{2\times 84}
Whakareatia -4 ki te 84.
x=\frac{-70±\sqrt{4900+98784}}{2\times 84}
Whakareatia -336 ki te -294.
x=\frac{-70±\sqrt{103684}}{2\times 84}
Tāpiri 4900 ki te 98784.
x=\frac{-70±322}{2\times 84}
Tuhia te pūtakerua o te 103684.
x=\frac{-70±322}{168}
Whakareatia 2 ki te 84.
x=\frac{252}{168}
Nā, me whakaoti te whārite x=\frac{-70±322}{168} ina he tāpiri te ±. Tāpiri -70 ki te 322.
x=\frac{3}{2}
Whakahekea te hautanga \frac{252}{168} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 84.
x=-\frac{392}{168}
Nā, me whakaoti te whārite x=\frac{-70±322}{168} ina he tango te ±. Tango 322 mai i -70.
x=-\frac{7}{3}
Whakahekea te hautanga \frac{-392}{168} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 56.
84x^{2}+70x-294=84\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{7}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -\frac{7}{3} mō te x_{2}.
84x^{2}+70x-294=84\left(x-\frac{3}{2}\right)\left(x+\frac{7}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
84x^{2}+70x-294=84\times \frac{2x-3}{2}\left(x+\frac{7}{3}\right)
Tango \frac{3}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
84x^{2}+70x-294=84\times \frac{2x-3}{2}\times \frac{3x+7}{3}
Tāpiri \frac{7}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
84x^{2}+70x-294=84\times \frac{\left(2x-3\right)\left(3x+7\right)}{2\times 3}
Whakareatia \frac{2x-3}{2} ki te \frac{3x+7}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
84x^{2}+70x-294=84\times \frac{\left(2x-3\right)\left(3x+7\right)}{6}
Whakareatia 2 ki te 3.
84x^{2}+70x-294=14\left(2x-3\right)\left(3x+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 84 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}