Aromātai
\frac{95}{2}=47.5
Tauwehe
\frac{5 \cdot 19}{2} = 47\frac{1}{2} = 47.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
84 \cdot 01 + 3 \cdot ( - 4 \cdot 025 + 3 ^ { 2 } ) + 41 \div 2
Tohaina
Kua tāruatia ki te papatopenga
0\times 1+3\left(-4\times 0\times 25+3^{2}\right)+\frac{41}{2}
Whakareatia te 84 ki te 0, ka 0.
0+3\left(-4\times 0\times 25+3^{2}\right)+\frac{41}{2}
Whakareatia te 0 ki te 1, ka 0.
0+3\left(0\times 25+3^{2}\right)+\frac{41}{2}
Whakareatia te -4 ki te 0, ka 0.
0+3\left(0+3^{2}\right)+\frac{41}{2}
Whakareatia te 0 ki te 25, ka 0.
0+3\left(0+9\right)+\frac{41}{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
0+3\times 9+\frac{41}{2}
Tāpirihia te 0 ki te 9, ka 9.
0+27+\frac{41}{2}
Whakareatia te 3 ki te 9, ka 27.
27+\frac{41}{2}
Tāpirihia te 0 ki te 27, ka 27.
\frac{54}{2}+\frac{41}{2}
Me tahuri te 27 ki te hautau \frac{54}{2}.
\frac{54+41}{2}
Tā te mea he rite te tauraro o \frac{54}{2} me \frac{41}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{95}{2}
Tāpirihia te 54 ki te 41, ka 95.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}