Aromātai
\frac{16628\left(n+n_{2}\right)}{nn_{2}}
Whakaroha
\frac{16628\left(n+n_{2}\right)}{nn_{2}}
Tohaina
Kua tāruatia ki te papatopenga
8314\left(\frac{2}{n_{2}}+\frac{3\times 2}{n\times 3}\right)
Me whakarea te \frac{3}{n} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
8314\left(\frac{2}{n_{2}}+\frac{2}{n}\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
8314\left(\frac{2n}{nn_{2}}+\frac{2n_{2}}{nn_{2}}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n_{2} me n ko nn_{2}. Whakareatia \frac{2}{n_{2}} ki te \frac{n}{n}. Whakareatia \frac{2}{n} ki te \frac{n_{2}}{n_{2}}.
8314\times \frac{2n+2n_{2}}{nn_{2}}
Tā te mea he rite te tauraro o \frac{2n}{nn_{2}} me \frac{2n_{2}}{nn_{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8314\left(2n+2n_{2}\right)}{nn_{2}}
Tuhia te 8314\times \frac{2n+2n_{2}}{nn_{2}} hei hautanga kotahi.
\frac{16628n+16628n_{2}}{nn_{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 8314 ki te 2n+2n_{2}.
8314\left(\frac{2}{n_{2}}+\frac{3\times 2}{n\times 3}\right)
Me whakarea te \frac{3}{n} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
8314\left(\frac{2}{n_{2}}+\frac{2}{n}\right)
Me whakakore tahi te 3 i te taurunga me te tauraro.
8314\left(\frac{2n}{nn_{2}}+\frac{2n_{2}}{nn_{2}}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n_{2} me n ko nn_{2}. Whakareatia \frac{2}{n_{2}} ki te \frac{n}{n}. Whakareatia \frac{2}{n} ki te \frac{n_{2}}{n_{2}}.
8314\times \frac{2n+2n_{2}}{nn_{2}}
Tā te mea he rite te tauraro o \frac{2n}{nn_{2}} me \frac{2n_{2}}{nn_{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8314\left(2n+2n_{2}\right)}{nn_{2}}
Tuhia te 8314\times \frac{2n+2n_{2}}{nn_{2}} hei hautanga kotahi.
\frac{16628n+16628n_{2}}{nn_{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te 8314 ki te 2n+2n_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}