Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8225\times 1.0295^{n}=3750
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
1.0295^{n}=\frac{150}{329}
Whakawehea ngā taha e rua ki te 8225.
\log(1.0295^{n})=\log(\frac{150}{329})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
n\log(1.0295)=\log(\frac{150}{329})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
n=\frac{\log(\frac{150}{329})}{\log(1.0295)}
Whakawehea ngā taha e rua ki te \log(1.0295).
n=\log_{1.0295}\left(\frac{150}{329}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).