Whakaoti mō x
x=\frac{5}{9}\approx 0.555555556
x=-\frac{5}{9}\approx -0.555555556
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}=\frac{25}{81}
Whakawehea ngā taha e rua ki te 81.
x^{2}-\frac{25}{81}=0
Tangohia te \frac{25}{81} mai i ngā taha e rua.
81x^{2}-25=0
Me whakarea ngā taha e rua ki te 81.
\left(9x-5\right)\left(9x+5\right)=0
Whakaarohia te 81x^{2}-25. Tuhia anō te 81x^{2}-25 hei \left(9x\right)^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{9} x=-\frac{5}{9}
Hei kimi otinga whārite, me whakaoti te 9x-5=0 me te 9x+5=0.
x^{2}=\frac{25}{81}
Whakawehea ngā taha e rua ki te 81.
x=\frac{5}{9} x=-\frac{5}{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{25}{81}
Whakawehea ngā taha e rua ki te 81.
x^{2}-\frac{25}{81}=0
Tangohia te \frac{25}{81} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{81}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{25}{81} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{25}{81}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{100}{81}}}{2}
Whakareatia -4 ki te -\frac{25}{81}.
x=\frac{0±\frac{10}{9}}{2}
Tuhia te pūtakerua o te \frac{100}{81}.
x=\frac{5}{9}
Nā, me whakaoti te whārite x=\frac{0±\frac{10}{9}}{2} ina he tāpiri te ±.
x=-\frac{5}{9}
Nā, me whakaoti te whārite x=\frac{0±\frac{10}{9}}{2} ina he tango te ±.
x=\frac{5}{9} x=-\frac{5}{9}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}