Tauwehe
\left(9c-10\right)^{2}
Aromātai
\left(9c-10\right)^{2}
Tohaina
Kua tāruatia ki te papatopenga
a+b=-180 ab=81\times 100=8100
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 81c^{2}+ac+bc+100. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8100 -2,-4050 -3,-2700 -4,-2025 -5,-1620 -6,-1350 -9,-900 -10,-810 -12,-675 -15,-540 -18,-450 -20,-405 -25,-324 -27,-300 -30,-270 -36,-225 -45,-180 -50,-162 -54,-150 -60,-135 -75,-108 -81,-100 -90,-90
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8100.
-1-8100=-8101 -2-4050=-4052 -3-2700=-2703 -4-2025=-2029 -5-1620=-1625 -6-1350=-1356 -9-900=-909 -10-810=-820 -12-675=-687 -15-540=-555 -18-450=-468 -20-405=-425 -25-324=-349 -27-300=-327 -30-270=-300 -36-225=-261 -45-180=-225 -50-162=-212 -54-150=-204 -60-135=-195 -75-108=-183 -81-100=-181 -90-90=-180
Tātaihia te tapeke mō ia takirua.
a=-90 b=-90
Ko te otinga te takirua ka hoatu i te tapeke -180.
\left(81c^{2}-90c\right)+\left(-90c+100\right)
Tuhia anō te 81c^{2}-180c+100 hei \left(81c^{2}-90c\right)+\left(-90c+100\right).
9c\left(9c-10\right)-10\left(9c-10\right)
Tauwehea te 9c i te tuatahi me te -10 i te rōpū tuarua.
\left(9c-10\right)\left(9c-10\right)
Whakatauwehea atu te kīanga pātahi 9c-10 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(9c-10\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(81c^{2}-180c+100)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(81,-180,100)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{81c^{2}}=9c
Kimihia te pūtakerua o te kīanga tau ārahi, 81c^{2}.
\sqrt{100}=10
Kimihia te pūtakerua o te kīanga tau autō, 100.
\left(9c-10\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
81c^{2}-180c+100=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 81\times 100}}{2\times 81}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-\left(-180\right)±\sqrt{32400-4\times 81\times 100}}{2\times 81}
Pūrua -180.
c=\frac{-\left(-180\right)±\sqrt{32400-324\times 100}}{2\times 81}
Whakareatia -4 ki te 81.
c=\frac{-\left(-180\right)±\sqrt{32400-32400}}{2\times 81}
Whakareatia -324 ki te 100.
c=\frac{-\left(-180\right)±\sqrt{0}}{2\times 81}
Tāpiri 32400 ki te -32400.
c=\frac{-\left(-180\right)±0}{2\times 81}
Tuhia te pūtakerua o te 0.
c=\frac{180±0}{2\times 81}
Ko te tauaro o -180 ko 180.
c=\frac{180±0}{162}
Whakareatia 2 ki te 81.
81c^{2}-180c+100=81\left(c-\frac{10}{9}\right)\left(c-\frac{10}{9}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{10}{9} mō te x_{1} me te \frac{10}{9} mō te x_{2}.
81c^{2}-180c+100=81\times \frac{9c-10}{9}\left(c-\frac{10}{9}\right)
Tango \frac{10}{9} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81c^{2}-180c+100=81\times \frac{9c-10}{9}\times \frac{9c-10}{9}
Tango \frac{10}{9} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81c^{2}-180c+100=81\times \frac{\left(9c-10\right)\left(9c-10\right)}{9\times 9}
Whakareatia \frac{9c-10}{9} ki te \frac{9c-10}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81c^{2}-180c+100=81\times \frac{\left(9c-10\right)\left(9c-10\right)}{81}
Whakareatia 9 ki te 9.
81c^{2}-180c+100=\left(9c-10\right)\left(9c-10\right)
Whakakorea atu te tauwehe pūnoa nui rawa 81 i roto i te 81 me te 81.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}