Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(9c-4\right)\left(9c+4\right)=0
Whakaarohia te 81c^{2}-16. Tuhia anō te 81c^{2}-16 hei \left(9c\right)^{2}-4^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
c=\frac{4}{9} c=-\frac{4}{9}
Hei kimi otinga whārite, me whakaoti te 9c-4=0 me te 9c+4=0.
81c^{2}=16
Me tāpiri te 16 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
c^{2}=\frac{16}{81}
Whakawehea ngā taha e rua ki te 81.
c=\frac{4}{9} c=-\frac{4}{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
81c^{2}-16=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}-4\times 81\left(-16\right)}}{2\times 81}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 81 mō a, 0 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\times 81\left(-16\right)}}{2\times 81}
Pūrua 0.
c=\frac{0±\sqrt{-324\left(-16\right)}}{2\times 81}
Whakareatia -4 ki te 81.
c=\frac{0±\sqrt{5184}}{2\times 81}
Whakareatia -324 ki te -16.
c=\frac{0±72}{2\times 81}
Tuhia te pūtakerua o te 5184.
c=\frac{0±72}{162}
Whakareatia 2 ki te 81.
c=\frac{4}{9}
Nā, me whakaoti te whārite c=\frac{0±72}{162} ina he tāpiri te ±. Whakahekea te hautanga \frac{72}{162} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
c=-\frac{4}{9}
Nā, me whakaoti te whārite c=\frac{0±72}{162} ina he tango te ±. Whakahekea te hautanga \frac{-72}{162} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
c=\frac{4}{9} c=-\frac{4}{9}
Kua oti te whārite te whakatau.