Whakaoti mō b
b=\frac{2}{3}\approx 0.666666667
b=\frac{8}{9}\approx 0.888888889
Tohaina
Kua tāruatia ki te papatopenga
81b^{2}-126b+48=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-126\right)±\sqrt{\left(-126\right)^{2}-4\times 81\times 48}}{2\times 81}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 81 mō a, -126 mō b, me 48 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-126\right)±\sqrt{15876-4\times 81\times 48}}{2\times 81}
Pūrua -126.
b=\frac{-\left(-126\right)±\sqrt{15876-324\times 48}}{2\times 81}
Whakareatia -4 ki te 81.
b=\frac{-\left(-126\right)±\sqrt{15876-15552}}{2\times 81}
Whakareatia -324 ki te 48.
b=\frac{-\left(-126\right)±\sqrt{324}}{2\times 81}
Tāpiri 15876 ki te -15552.
b=\frac{-\left(-126\right)±18}{2\times 81}
Tuhia te pūtakerua o te 324.
b=\frac{126±18}{2\times 81}
Ko te tauaro o -126 ko 126.
b=\frac{126±18}{162}
Whakareatia 2 ki te 81.
b=\frac{144}{162}
Nā, me whakaoti te whārite b=\frac{126±18}{162} ina he tāpiri te ±. Tāpiri 126 ki te 18.
b=\frac{8}{9}
Whakahekea te hautanga \frac{144}{162} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
b=\frac{108}{162}
Nā, me whakaoti te whārite b=\frac{126±18}{162} ina he tango te ±. Tango 18 mai i 126.
b=\frac{2}{3}
Whakahekea te hautanga \frac{108}{162} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 54.
b=\frac{8}{9} b=\frac{2}{3}
Kua oti te whārite te whakatau.
81b^{2}-126b+48=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
81b^{2}-126b+48-48=-48
Me tango 48 mai i ngā taha e rua o te whārite.
81b^{2}-126b=-48
Mā te tango i te 48 i a ia ake anō ka toe ko te 0.
\frac{81b^{2}-126b}{81}=-\frac{48}{81}
Whakawehea ngā taha e rua ki te 81.
b^{2}+\left(-\frac{126}{81}\right)b=-\frac{48}{81}
Mā te whakawehe ki te 81 ka wetekia te whakareanga ki te 81.
b^{2}-\frac{14}{9}b=-\frac{48}{81}
Whakahekea te hautanga \frac{-126}{81} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
b^{2}-\frac{14}{9}b=-\frac{16}{27}
Whakahekea te hautanga \frac{-48}{81} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
b^{2}-\frac{14}{9}b+\left(-\frac{7}{9}\right)^{2}=-\frac{16}{27}+\left(-\frac{7}{9}\right)^{2}
Whakawehea te -\frac{14}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{9}. Nā, tāpiria te pūrua o te -\frac{7}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-\frac{14}{9}b+\frac{49}{81}=-\frac{16}{27}+\frac{49}{81}
Pūruatia -\frac{7}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-\frac{14}{9}b+\frac{49}{81}=\frac{1}{81}
Tāpiri -\frac{16}{27} ki te \frac{49}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(b-\frac{7}{9}\right)^{2}=\frac{1}{81}
Tauwehea b^{2}-\frac{14}{9}b+\frac{49}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{7}{9}\right)^{2}}=\sqrt{\frac{1}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{7}{9}=\frac{1}{9} b-\frac{7}{9}=-\frac{1}{9}
Whakarūnātia.
b=\frac{8}{9} b=\frac{2}{3}
Me tāpiri \frac{7}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}