Tauwehe
\left(9x+5\right)^{2}
Aromātai
\left(9x+5\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=90 ab=81\times 25=2025
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 81x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,2025 3,675 5,405 9,225 15,135 25,81 27,75 45,45
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 2025.
1+2025=2026 3+675=678 5+405=410 9+225=234 15+135=150 25+81=106 27+75=102 45+45=90
Tātaihia te tapeke mō ia takirua.
a=45 b=45
Ko te otinga te takirua ka hoatu i te tapeke 90.
\left(81x^{2}+45x\right)+\left(45x+25\right)
Tuhia anō te 81x^{2}+90x+25 hei \left(81x^{2}+45x\right)+\left(45x+25\right).
9x\left(9x+5\right)+5\left(9x+5\right)
Tauwehea te 9x i te tuatahi me te 5 i te rōpū tuarua.
\left(9x+5\right)\left(9x+5\right)
Whakatauwehea atu te kīanga pātahi 9x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(9x+5\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(81x^{2}+90x+25)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(81,90,25)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{81x^{2}}=9x
Kimihia te pūtakerua o te kīanga tau ārahi, 81x^{2}.
\sqrt{25}=5
Kimihia te pūtakerua o te kīanga tau autō, 25.
\left(9x+5\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
81x^{2}+90x+25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-90±\sqrt{90^{2}-4\times 81\times 25}}{2\times 81}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-90±\sqrt{8100-4\times 81\times 25}}{2\times 81}
Pūrua 90.
x=\frac{-90±\sqrt{8100-324\times 25}}{2\times 81}
Whakareatia -4 ki te 81.
x=\frac{-90±\sqrt{8100-8100}}{2\times 81}
Whakareatia -324 ki te 25.
x=\frac{-90±\sqrt{0}}{2\times 81}
Tāpiri 8100 ki te -8100.
x=\frac{-90±0}{2\times 81}
Tuhia te pūtakerua o te 0.
x=\frac{-90±0}{162}
Whakareatia 2 ki te 81.
81x^{2}+90x+25=81\left(x-\left(-\frac{5}{9}\right)\right)\left(x-\left(-\frac{5}{9}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{9} mō te x_{1} me te -\frac{5}{9} mō te x_{2}.
81x^{2}+90x+25=81\left(x+\frac{5}{9}\right)\left(x+\frac{5}{9}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
81x^{2}+90x+25=81\times \frac{9x+5}{9}\left(x+\frac{5}{9}\right)
Tāpiri \frac{5}{9} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81x^{2}+90x+25=81\times \frac{9x+5}{9}\times \frac{9x+5}{9}
Tāpiri \frac{5}{9} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81x^{2}+90x+25=81\times \frac{\left(9x+5\right)\left(9x+5\right)}{9\times 9}
Whakareatia \frac{9x+5}{9} ki te \frac{9x+5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
81x^{2}+90x+25=81\times \frac{\left(9x+5\right)\left(9x+5\right)}{81}
Whakareatia 9 ki te 9.
81x^{2}+90x+25=\left(9x+5\right)\left(9x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 81 i roto i te 81 me te 81.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}