Whakaoti mō x
x = \frac{\sqrt{4009} - 53}{10} \approx 1.031666447
x=\frac{-\sqrt{4009}-53}{10}\approx -11.631666447
Graph
Tohaina
Kua tāruatia ki te papatopenga
800x+4500x+500x^{2}=6000
Whakamahia te āhuatanga tohatoha hei whakarea te 500x ki te 9+x.
5300x+500x^{2}=6000
Pahekotia te 800x me 4500x, ka 5300x.
5300x+500x^{2}-6000=0
Tangohia te 6000 mai i ngā taha e rua.
500x^{2}+5300x-6000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5300±\sqrt{5300^{2}-4\times 500\left(-6000\right)}}{2\times 500}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 500 mō a, 5300 mō b, me -6000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5300±\sqrt{28090000-4\times 500\left(-6000\right)}}{2\times 500}
Pūrua 5300.
x=\frac{-5300±\sqrt{28090000-2000\left(-6000\right)}}{2\times 500}
Whakareatia -4 ki te 500.
x=\frac{-5300±\sqrt{28090000+12000000}}{2\times 500}
Whakareatia -2000 ki te -6000.
x=\frac{-5300±\sqrt{40090000}}{2\times 500}
Tāpiri 28090000 ki te 12000000.
x=\frac{-5300±100\sqrt{4009}}{2\times 500}
Tuhia te pūtakerua o te 40090000.
x=\frac{-5300±100\sqrt{4009}}{1000}
Whakareatia 2 ki te 500.
x=\frac{100\sqrt{4009}-5300}{1000}
Nā, me whakaoti te whārite x=\frac{-5300±100\sqrt{4009}}{1000} ina he tāpiri te ±. Tāpiri -5300 ki te 100\sqrt{4009}.
x=\frac{\sqrt{4009}-53}{10}
Whakawehe -5300+100\sqrt{4009} ki te 1000.
x=\frac{-100\sqrt{4009}-5300}{1000}
Nā, me whakaoti te whārite x=\frac{-5300±100\sqrt{4009}}{1000} ina he tango te ±. Tango 100\sqrt{4009} mai i -5300.
x=\frac{-\sqrt{4009}-53}{10}
Whakawehe -5300-100\sqrt{4009} ki te 1000.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
Kua oti te whārite te whakatau.
800x+4500x+500x^{2}=6000
Whakamahia te āhuatanga tohatoha hei whakarea te 500x ki te 9+x.
5300x+500x^{2}=6000
Pahekotia te 800x me 4500x, ka 5300x.
500x^{2}+5300x=6000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{500x^{2}+5300x}{500}=\frac{6000}{500}
Whakawehea ngā taha e rua ki te 500.
x^{2}+\frac{5300}{500}x=\frac{6000}{500}
Mā te whakawehe ki te 500 ka wetekia te whakareanga ki te 500.
x^{2}+\frac{53}{5}x=\frac{6000}{500}
Whakahekea te hautanga \frac{5300}{500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 100.
x^{2}+\frac{53}{5}x=12
Whakawehe 6000 ki te 500.
x^{2}+\frac{53}{5}x+\left(\frac{53}{10}\right)^{2}=12+\left(\frac{53}{10}\right)^{2}
Whakawehea te \frac{53}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{53}{10}. Nā, tāpiria te pūrua o te \frac{53}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=12+\frac{2809}{100}
Pūruatia \frac{53}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=\frac{4009}{100}
Tāpiri 12 ki te \frac{2809}{100}.
\left(x+\frac{53}{10}\right)^{2}=\frac{4009}{100}
Tauwehea x^{2}+\frac{53}{5}x+\frac{2809}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{53}{10}\right)^{2}}=\sqrt{\frac{4009}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{53}{10}=\frac{\sqrt{4009}}{10} x+\frac{53}{10}=-\frac{\sqrt{4009}}{10}
Whakarūnātia.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
Me tango \frac{53}{10} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}