Whakaoti mō t
t=100\ln(80000)\approx 1128.978191366
Tohaina
Kua tāruatia ki te papatopenga
\frac{8000000}{100}=e^{0.01t}
Whakawehea ngā taha e rua ki te 100.
80000=e^{0.01t}
Whakawehea te 8000000 ki te 100, kia riro ko 80000.
e^{0.01t}=80000
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(e^{0.01t})=\log(80000)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
0.01t\log(e)=\log(80000)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
0.01t=\frac{\log(80000)}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
0.01t=\log_{e}\left(80000\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(80000)}{0.01}
Me whakarea ngā taha e rua ki te 100.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}