Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Whakareatia ngā taha e rua o te whārite ki te 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Whakamahia te āhuatanga tohatoha hei whakarea te 8000 ki te 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 8000 me te 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 8000+800x ki ia tau o 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 8000 me te 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Pahekotia te -800x me 800x, ka 0.
8000-80xx=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 800 me te 10.
8000-80x^{2}=8000-320
Whakareatia te x ki te x, ka x^{2}.
8000-80x^{2}=7680
Tangohia te 320 i te 8000, ka 7680.
-80x^{2}=7680-8000
Tangohia te 8000 mai i ngā taha e rua.
-80x^{2}=-320
Tangohia te 8000 i te 7680, ka -320.
x^{2}=\frac{-320}{-80}
Whakawehea ngā taha e rua ki te -80.
x^{2}=4
Whakawehea te -320 ki te -80, kia riro ko 4.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Whakareatia ngā taha e rua o te whārite ki te 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Whakamahia te āhuatanga tohatoha hei whakarea te 8000 ki te 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 8000 me te 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 8000+800x ki ia tau o 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 8000 me te 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Pahekotia te -800x me 800x, ka 0.
8000-80xx=8000-320
Whakakorea atu te tauwehe pūnoa nui rawa 10 i roto i te 800 me te 10.
8000-80x^{2}=8000-320
Whakareatia te x ki te x, ka x^{2}.
8000-80x^{2}=7680
Tangohia te 320 i te 8000, ka 7680.
8000-80x^{2}-7680=0
Tangohia te 7680 mai i ngā taha e rua.
320-80x^{2}=0
Tangohia te 7680 i te 8000, ka 320.
-80x^{2}+320=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-80\right)\times 320}}{2\left(-80\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -80 mō a, 0 mō b, me 320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-80\right)\times 320}}{2\left(-80\right)}
Pūrua 0.
x=\frac{0±\sqrt{320\times 320}}{2\left(-80\right)}
Whakareatia -4 ki te -80.
x=\frac{0±\sqrt{102400}}{2\left(-80\right)}
Whakareatia 320 ki te 320.
x=\frac{0±320}{2\left(-80\right)}
Tuhia te pūtakerua o te 102400.
x=\frac{0±320}{-160}
Whakareatia 2 ki te -80.
x=-2
Nā, me whakaoti te whārite x=\frac{0±320}{-160} ina he tāpiri te ±. Whakawehe 320 ki te -160.
x=2
Nā, me whakaoti te whārite x=\frac{0±320}{-160} ina he tango te ±. Whakawehe -320 ki te -160.
x=-2 x=2
Kua oti te whārite te whakatau.