Whakaoti mō x
x = \frac{751}{3} = 250\frac{1}{3} \approx 250.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
960+120x+500\times \frac{2}{3}\times 12-35000=0
Whakareatia te 80 ki te 12, ka 960.
960+120x+\frac{500\times 2}{3}\times 12-35000=0
Tuhia te 500\times \frac{2}{3} hei hautanga kotahi.
960+120x+\frac{1000}{3}\times 12-35000=0
Whakareatia te 500 ki te 2, ka 1000.
960+120x+\frac{1000\times 12}{3}-35000=0
Tuhia te \frac{1000}{3}\times 12 hei hautanga kotahi.
960+120x+\frac{12000}{3}-35000=0
Whakareatia te 1000 ki te 12, ka 12000.
960+120x+4000-35000=0
Whakawehea te 12000 ki te 3, kia riro ko 4000.
4960+120x-35000=0
Tāpirihia te 960 ki te 4000, ka 4960.
-30040+120x=0
Tangohia te 35000 i te 4960, ka -30040.
120x=30040
Me tāpiri te 30040 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{30040}{120}
Whakawehea ngā taha e rua ki te 120.
x=\frac{751}{3}
Whakahekea te hautanga \frac{30040}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}