Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{80}{100}=\frac{24-x}{28-x}
Whakawehea ngā taha e rua ki te 100.
\frac{4}{5}=\frac{24-x}{28-x}
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
4\left(x-28\right)=-5\left(24-x\right)
Tē taea kia ōrite te tāupe x ki 28 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 5\left(x-28\right), arā, te tauraro pātahi he tino iti rawa te kitea o 5,28-x.
4x-112=-5\left(24-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-28.
4x-112=-120+5x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 24-x.
4x-112-5x=-120
Tangohia te 5x mai i ngā taha e rua.
-x-112=-120
Pahekotia te 4x me -5x, ka -x.
-x=-120+112
Me tāpiri te 112 ki ngā taha e rua.
-x=-8
Tāpirihia te -120 ki te 112, ka -8.
x=8
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}