Whakaoti mō x (complex solution)
x=\frac{\sqrt{15}i}{40}+\frac{5}{8}\approx 0.625+0.096824584i
x=-\frac{\sqrt{15}i}{40}+\frac{5}{8}\approx 0.625-0.096824584i
Graph
Tohaina
Kua tāruatia ki te papatopenga
80x^{2}-100x+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 80\times 32}}{2\times 80}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 80 mō a, -100 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 80\times 32}}{2\times 80}
Pūrua -100.
x=\frac{-\left(-100\right)±\sqrt{10000-320\times 32}}{2\times 80}
Whakareatia -4 ki te 80.
x=\frac{-\left(-100\right)±\sqrt{10000-10240}}{2\times 80}
Whakareatia -320 ki te 32.
x=\frac{-\left(-100\right)±\sqrt{-240}}{2\times 80}
Tāpiri 10000 ki te -10240.
x=\frac{-\left(-100\right)±4\sqrt{15}i}{2\times 80}
Tuhia te pūtakerua o te -240.
x=\frac{100±4\sqrt{15}i}{2\times 80}
Ko te tauaro o -100 ko 100.
x=\frac{100±4\sqrt{15}i}{160}
Whakareatia 2 ki te 80.
x=\frac{100+4\sqrt{15}i}{160}
Nā, me whakaoti te whārite x=\frac{100±4\sqrt{15}i}{160} ina he tāpiri te ±. Tāpiri 100 ki te 4i\sqrt{15}.
x=\frac{\sqrt{15}i}{40}+\frac{5}{8}
Whakawehe 100+4i\sqrt{15} ki te 160.
x=\frac{-4\sqrt{15}i+100}{160}
Nā, me whakaoti te whārite x=\frac{100±4\sqrt{15}i}{160} ina he tango te ±. Tango 4i\sqrt{15} mai i 100.
x=-\frac{\sqrt{15}i}{40}+\frac{5}{8}
Whakawehe 100-4i\sqrt{15} ki te 160.
x=\frac{\sqrt{15}i}{40}+\frac{5}{8} x=-\frac{\sqrt{15}i}{40}+\frac{5}{8}
Kua oti te whārite te whakatau.
80x^{2}-100x+32=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
80x^{2}-100x+32-32=-32
Me tango 32 mai i ngā taha e rua o te whārite.
80x^{2}-100x=-32
Mā te tango i te 32 i a ia ake anō ka toe ko te 0.
\frac{80x^{2}-100x}{80}=-\frac{32}{80}
Whakawehea ngā taha e rua ki te 80.
x^{2}+\left(-\frac{100}{80}\right)x=-\frac{32}{80}
Mā te whakawehe ki te 80 ka wetekia te whakareanga ki te 80.
x^{2}-\frac{5}{4}x=-\frac{32}{80}
Whakahekea te hautanga \frac{-100}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x^{2}-\frac{5}{4}x=-\frac{2}{5}
Whakahekea te hautanga \frac{-32}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-\frac{2}{5}+\left(-\frac{5}{8}\right)^{2}
Whakawehea te -\frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{8}. Nā, tāpiria te pūrua o te -\frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{2}{5}+\frac{25}{64}
Pūruatia -\frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{3}{320}
Tāpiri -\frac{2}{5} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{8}\right)^{2}=-\frac{3}{320}
Tauwehea x^{2}-\frac{5}{4}x+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{3}{320}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{8}=\frac{\sqrt{15}i}{40} x-\frac{5}{8}=-\frac{\sqrt{15}i}{40}
Whakarūnātia.
x=\frac{\sqrt{15}i}{40}+\frac{5}{8} x=-\frac{\sqrt{15}i}{40}+\frac{5}{8}
Me tāpiri \frac{5}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}