Whakaoti mō I
I = \frac{9367}{5} = 1873\frac{2}{5} = 1873.4
Tohaina
Kua tāruatia ki te papatopenga
80I-373360+120\left(I-11\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 80 ki te I-4667.
80I-373360+120I-1320=0
Whakamahia te āhuatanga tohatoha hei whakarea te 120 ki te I-11.
200I-373360-1320=0
Pahekotia te 80I me 120I, ka 200I.
200I-374680=0
Tangohia te 1320 i te -373360, ka -374680.
200I=374680
Me tāpiri te 374680 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
I=\frac{374680}{200}
Whakawehea ngā taha e rua ki te 200.
I=\frac{9367}{5}
Whakahekea te hautanga \frac{374680}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}