80 \times 90 \% +85 \times 60 \% +125+140+115+80 \times 30 \% +75 \times 30 \% +30+20+25
Aromātai
\frac{1249}{2}=624.5
Tauwehe
\frac{1249}{2} = 624\frac{1}{2} = 624.5
Tohaina
Kua tāruatia ki te papatopenga
80\times \frac{9}{10}+85\times \frac{60}{100}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakahekea te hautanga \frac{90}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{80\times 9}{10}+85\times \frac{60}{100}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tuhia te 80\times \frac{9}{10} hei hautanga kotahi.
\frac{720}{10}+85\times \frac{60}{100}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakareatia te 80 ki te 9, ka 720.
72+85\times \frac{60}{100}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakawehea te 720 ki te 10, kia riro ko 72.
72+85\times \frac{3}{5}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakahekea te hautanga \frac{60}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
72+\frac{85\times 3}{5}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tuhia te 85\times \frac{3}{5} hei hautanga kotahi.
72+\frac{255}{5}+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakareatia te 85 ki te 3, ka 255.
72+51+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Whakawehea te 255 ki te 5, kia riro ko 51.
123+125+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tāpirihia te 72 ki te 51, ka 123.
248+140+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tāpirihia te 123 ki te 125, ka 248.
388+115+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tāpirihia te 248 ki te 140, ka 388.
503+80\times \frac{30}{100}+75\times \frac{30}{100}+30+20+25
Tāpirihia te 388 ki te 115, ka 503.
503+80\times \frac{3}{10}+75\times \frac{30}{100}+30+20+25
Whakahekea te hautanga \frac{30}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
503+\frac{80\times 3}{10}+75\times \frac{30}{100}+30+20+25
Tuhia te 80\times \frac{3}{10} hei hautanga kotahi.
503+\frac{240}{10}+75\times \frac{30}{100}+30+20+25
Whakareatia te 80 ki te 3, ka 240.
503+24+75\times \frac{30}{100}+30+20+25
Whakawehea te 240 ki te 10, kia riro ko 24.
527+75\times \frac{30}{100}+30+20+25
Tāpirihia te 503 ki te 24, ka 527.
527+75\times \frac{3}{10}+30+20+25
Whakahekea te hautanga \frac{30}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
527+\frac{75\times 3}{10}+30+20+25
Tuhia te 75\times \frac{3}{10} hei hautanga kotahi.
527+\frac{225}{10}+30+20+25
Whakareatia te 75 ki te 3, ka 225.
527+\frac{45}{2}+30+20+25
Whakahekea te hautanga \frac{225}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1054}{2}+\frac{45}{2}+30+20+25
Me tahuri te 527 ki te hautau \frac{1054}{2}.
\frac{1054+45}{2}+30+20+25
Tā te mea he rite te tauraro o \frac{1054}{2} me \frac{45}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1099}{2}+30+20+25
Tāpirihia te 1054 ki te 45, ka 1099.
\frac{1099}{2}+\frac{60}{2}+20+25
Me tahuri te 30 ki te hautau \frac{60}{2}.
\frac{1099+60}{2}+20+25
Tā te mea he rite te tauraro o \frac{1099}{2} me \frac{60}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1159}{2}+20+25
Tāpirihia te 1099 ki te 60, ka 1159.
\frac{1159}{2}+\frac{40}{2}+25
Me tahuri te 20 ki te hautau \frac{40}{2}.
\frac{1159+40}{2}+25
Tā te mea he rite te tauraro o \frac{1159}{2} me \frac{40}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1199}{2}+25
Tāpirihia te 1159 ki te 40, ka 1199.
\frac{1199}{2}+\frac{50}{2}
Me tahuri te 25 ki te hautau \frac{50}{2}.
\frac{1199+50}{2}
Tā te mea he rite te tauraro o \frac{1199}{2} me \frac{50}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1249}{2}
Tāpirihia te 1199 ki te 50, ka 1249.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}