Whakaoti mō d
d=-\frac{80}{x\left(1-x\right)}
x\neq 1\text{ and }x\neq 0
Whakaoti mō x (complex solution)
x=\frac{\sqrt{d\left(d+320\right)}+d}{2d}
x=\frac{-\sqrt{d\left(d+320\right)}+d}{2d}\text{, }d\neq 0
Whakaoti mō x
x=\frac{\sqrt{d\left(d+320\right)}+d}{2d}
x=\frac{-\sqrt{d\left(d+320\right)}+d}{2d}\text{, }d>0\text{ or }d\leq -320
Graph
Tohaina
Kua tāruatia ki te papatopenga
80=\left(x^{2}-x\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
80=x^{2}d-xd
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-x ki te d.
x^{2}d-xd=80
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x^{2}-x\right)d=80
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(x^{2}-x\right)d}{x^{2}-x}=\frac{80}{x^{2}-x}
Whakawehea ngā taha e rua ki te x^{2}-x.
d=\frac{80}{x^{2}-x}
Mā te whakawehe ki te x^{2}-x ka wetekia te whakareanga ki te x^{2}-x.
d=\frac{80}{x\left(x-1\right)}
Whakawehe 80 ki te x^{2}-x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}