Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

80-x=\sqrt{36+x^{2}}
Me tango x mai i ngā taha e rua o te whārite.
\left(80-x\right)^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
6400-160x+x^{2}=\left(\sqrt{36+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(80-x\right)^{2}.
6400-160x+x^{2}=36+x^{2}
Tātaihia te \sqrt{36+x^{2}} mā te pū o 2, kia riro ko 36+x^{2}.
6400-160x+x^{2}-x^{2}=36
Tangohia te x^{2} mai i ngā taha e rua.
6400-160x=36
Pahekotia te x^{2} me -x^{2}, ka 0.
-160x=36-6400
Tangohia te 6400 mai i ngā taha e rua.
-160x=-6364
Tangohia te 6400 i te 36, ka -6364.
x=\frac{-6364}{-160}
Whakawehea ngā taha e rua ki te -160.
x=\frac{1591}{40}
Whakahekea te hautanga \frac{-6364}{-160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
80=\frac{1591}{40}+\sqrt{36+\left(\frac{1591}{40}\right)^{2}}
Whakakapia te \frac{1591}{40} mō te x i te whārite 80=x+\sqrt{36+x^{2}}.
80=80
Whakarūnātia. Ko te uara x=\frac{1591}{40} kua ngata te whārite.
x=\frac{1591}{40}
Ko te whārite 80-x=\sqrt{x^{2}+36} he rongoā ahurei.