Tīpoka ki ngā ihirangi matua
Whakaoti mō D
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

80\times 4=\pi D^{2}
Me whakarea ngā taha e rua ki te 4.
320=\pi D^{2}
Whakareatia te 80 ki te 4, ka 320.
\pi D^{2}=320
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{\pi D^{2}}{\pi }=\frac{320}{\pi }
Whakawehea ngā taha e rua ki te \pi .
D^{2}=\frac{320}{\pi }
Mā te whakawehe ki te \pi ka wetekia te whakareanga ki te \pi .
D=\frac{40}{\sqrt{5\pi }} D=-\frac{40}{\sqrt{5\pi }}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
80\times 4=\pi D^{2}
Me whakarea ngā taha e rua ki te 4.
320=\pi D^{2}
Whakareatia te 80 ki te 4, ka 320.
\pi D^{2}=320
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\pi D^{2}-320=0
Tangohia te 320 mai i ngā taha e rua.
D=\frac{0±\sqrt{0^{2}-4\pi \left(-320\right)}}{2\pi }
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \pi mō a, 0 mō b, me -320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{0±\sqrt{-4\pi \left(-320\right)}}{2\pi }
Pūrua 0.
D=\frac{0±\sqrt{\left(-4\pi \right)\left(-320\right)}}{2\pi }
Whakareatia -4 ki te \pi .
D=\frac{0±\sqrt{1280\pi }}{2\pi }
Whakareatia -4\pi ki te -320.
D=\frac{0±16\sqrt{5\pi }}{2\pi }
Tuhia te pūtakerua o te 1280\pi .
D=\frac{40}{\sqrt{5\pi }}
Nā, me whakaoti te whārite D=\frac{0±16\sqrt{5\pi }}{2\pi } ina he tāpiri te ±.
D=-\frac{40}{\sqrt{5\pi }}
Nā, me whakaoti te whārite D=\frac{0±16\sqrt{5\pi }}{2\pi } ina he tango te ±.
D=\frac{40}{\sqrt{5\pi }} D=-\frac{40}{\sqrt{5\pi }}
Kua oti te whārite te whakatau.