Aromātai
6
Tauwehe
2\times 3
Tohaina
Kua tāruatia ki te papatopenga
8-\frac{7}{6-\frac{11}{5-\frac{2}{\frac{12}{3}-\frac{2}{3}}}}
Me tahuri te 4 ki te hautau \frac{12}{3}.
8-\frac{7}{6-\frac{11}{5-\frac{2}{\frac{12-2}{3}}}}
Tā te mea he rite te tauraro o \frac{12}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
8-\frac{7}{6-\frac{11}{5-\frac{2}{\frac{10}{3}}}}
Tangohia te 2 i te 12, ka 10.
8-\frac{7}{6-\frac{11}{5-2\times \frac{3}{10}}}
Whakawehe 2 ki te \frac{10}{3} mā te whakarea 2 ki te tau huripoki o \frac{10}{3}.
8-\frac{7}{6-\frac{11}{5-\frac{2\times 3}{10}}}
Tuhia te 2\times \frac{3}{10} hei hautanga kotahi.
8-\frac{7}{6-\frac{11}{5-\frac{6}{10}}}
Whakareatia te 2 ki te 3, ka 6.
8-\frac{7}{6-\frac{11}{5-\frac{3}{5}}}
Whakahekea te hautanga \frac{6}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
8-\frac{7}{6-\frac{11}{\frac{25}{5}-\frac{3}{5}}}
Me tahuri te 5 ki te hautau \frac{25}{5}.
8-\frac{7}{6-\frac{11}{\frac{25-3}{5}}}
Tā te mea he rite te tauraro o \frac{25}{5} me \frac{3}{5}, me tango rāua mā te tango i ō raua taurunga.
8-\frac{7}{6-\frac{11}{\frac{22}{5}}}
Tangohia te 3 i te 25, ka 22.
8-\frac{7}{6-11\times \frac{5}{22}}
Whakawehe 11 ki te \frac{22}{5} mā te whakarea 11 ki te tau huripoki o \frac{22}{5}.
8-\frac{7}{6-\frac{11\times 5}{22}}
Tuhia te 11\times \frac{5}{22} hei hautanga kotahi.
8-\frac{7}{6-\frac{55}{22}}
Whakareatia te 11 ki te 5, ka 55.
8-\frac{7}{6-\frac{5}{2}}
Whakahekea te hautanga \frac{55}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
8-\frac{7}{\frac{12}{2}-\frac{5}{2}}
Me tahuri te 6 ki te hautau \frac{12}{2}.
8-\frac{7}{\frac{12-5}{2}}
Tā te mea he rite te tauraro o \frac{12}{2} me \frac{5}{2}, me tango rāua mā te tango i ō raua taurunga.
8-\frac{7}{\frac{7}{2}}
Tangohia te 5 i te 12, ka 7.
8-7\times \frac{2}{7}
Whakawehe 7 ki te \frac{7}{2} mā te whakarea 7 ki te tau huripoki o \frac{7}{2}.
8-2
Me whakakore te 7 me te 7.
6
Tangohia te 2 i te 8, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}