Whakaoti mō x
x=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x-72-9\left(x-8\right)=x+8-\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x-9.
8x-72-9x+72=x+8-\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te x-8.
-x-72+72=x+8-\left(x-4\right)
Pahekotia te 8x me -9x, ka -x.
-x=x+8-\left(x-4\right)
Tāpirihia te -72 ki te 72, ka 0.
-x=x+8-x-\left(-4\right)
Hei kimi i te tauaro o x-4, kimihia te tauaro o ia taurangi.
-x=x+8-x+4
Ko te tauaro o -4 ko 4.
-x=8+4
Pahekotia te x me -x, ka 0.
-x=12
Tāpirihia te 8 ki te 4, ka 12.
x=-12
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}