Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
24-16x=4\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 3-2x.
24-16x=4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
24-16x-4x=4
Tangohia te 4x mai i ngā taha e rua.
24-20x=4
Pahekotia te -16x me -4x, ka -20x.
-20x=4-24
Tangohia te 24 mai i ngā taha e rua.
-20x=-20
Tangohia te 24 i te 4, ka -20.
x=\frac{-20}{-20}
Whakawehea ngā taha e rua ki te -20.
x=1
Whakawehea te -20 ki te -20, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}