Aromātai
-\frac{899}{3}\approx -299.666666667
Tauwehe
-\frac{899}{3} = -299\frac{2}{3} = -299.6666666666667
Tohaina
Kua tāruatia ki te papatopenga
8+54-\frac{6\times 3+12}{3}\left(35+\frac{7}{6}\right)
Whakareatia te 6 ki te 9, ka 54.
62-\frac{6\times 3+12}{3}\left(35+\frac{7}{6}\right)
Tāpirihia te 8 ki te 54, ka 62.
62-\frac{18+12}{3}\left(35+\frac{7}{6}\right)
Whakareatia te 6 ki te 3, ka 18.
62-\frac{30}{3}\left(35+\frac{7}{6}\right)
Tāpirihia te 18 ki te 12, ka 30.
62-10\left(35+\frac{7}{6}\right)
Whakawehea te 30 ki te 3, kia riro ko 10.
62-10\left(\frac{210}{6}+\frac{7}{6}\right)
Me tahuri te 35 ki te hautau \frac{210}{6}.
62-10\times \frac{210+7}{6}
Tā te mea he rite te tauraro o \frac{210}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
62-10\times \frac{217}{6}
Tāpirihia te 210 ki te 7, ka 217.
62-\frac{10\times 217}{6}
Tuhia te 10\times \frac{217}{6} hei hautanga kotahi.
62-\frac{2170}{6}
Whakareatia te 10 ki te 217, ka 2170.
62-\frac{1085}{3}
Whakahekea te hautanga \frac{2170}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{186}{3}-\frac{1085}{3}
Me tahuri te 62 ki te hautau \frac{186}{3}.
\frac{186-1085}{3}
Tā te mea he rite te tauraro o \frac{186}{3} me \frac{1085}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{899}{3}
Tangohia te 1085 i te 186, ka -899.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}