Aromātai
-\frac{136}{11}\approx -12.363636364
Tauwehe
-\frac{136}{11} = -12\frac{4}{11} = -12.363636363636363
Tohaina
Kua tāruatia ki te papatopenga
11+5\times 4-\frac{15}{11}-6-9\times 4
Tāpirihia te 8 ki te 3, ka 11.
11+20-\frac{15}{11}-6-9\times 4
Whakareatia te 5 ki te 4, ka 20.
31-\frac{15}{11}-6-9\times 4
Tāpirihia te 11 ki te 20, ka 31.
\frac{341}{11}-\frac{15}{11}-6-9\times 4
Me tahuri te 31 ki te hautau \frac{341}{11}.
\frac{341-15}{11}-6-9\times 4
Tā te mea he rite te tauraro o \frac{341}{11} me \frac{15}{11}, me tango rāua mā te tango i ō raua taurunga.
\frac{326}{11}-6-9\times 4
Tangohia te 15 i te 341, ka 326.
\frac{326}{11}-\frac{66}{11}-9\times 4
Me tahuri te 6 ki te hautau \frac{66}{11}.
\frac{326-66}{11}-9\times 4
Tā te mea he rite te tauraro o \frac{326}{11} me \frac{66}{11}, me tango rāua mā te tango i ō raua taurunga.
\frac{260}{11}-9\times 4
Tangohia te 66 i te 326, ka 260.
\frac{260}{11}-36
Whakareatia te 9 ki te 4, ka 36.
\frac{260}{11}-\frac{396}{11}
Me tahuri te 36 ki te hautau \frac{396}{11}.
\frac{260-396}{11}
Tā te mea he rite te tauraro o \frac{260}{11} me \frac{396}{11}, me tango rāua mā te tango i ō raua taurunga.
-\frac{136}{11}
Tangohia te 396 i te 260, ka -136.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}