Whakaoti mō x
x=16
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{36x}=2x-8
Me tango 8 mai i ngā taha e rua o te whārite.
\left(\sqrt{36x}\right)^{2}=\left(2x-8\right)^{2}
Pūruatia ngā taha e rua o te whārite.
36x=\left(2x-8\right)^{2}
Tātaihia te \sqrt{36x} mā te pū o 2, kia riro ko 36x.
36x=4x^{2}-32x+64
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-8\right)^{2}.
36x-4x^{2}=-32x+64
Tangohia te 4x^{2} mai i ngā taha e rua.
36x-4x^{2}+32x=64
Me tāpiri te 32x ki ngā taha e rua.
68x-4x^{2}=64
Pahekotia te 36x me 32x, ka 68x.
68x-4x^{2}-64=0
Tangohia te 64 mai i ngā taha e rua.
17x-x^{2}-16=0
Whakawehea ngā taha e rua ki te 4.
-x^{2}+17x-16=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=17 ab=-\left(-16\right)=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,16 2,8 4,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
1+16=17 2+8=10 4+4=8
Tātaihia te tapeke mō ia takirua.
a=16 b=1
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(-x^{2}+16x\right)+\left(x-16\right)
Tuhia anō te -x^{2}+17x-16 hei \left(-x^{2}+16x\right)+\left(x-16\right).
-x\left(x-16\right)+x-16
Whakatauwehea atu -x i te -x^{2}+16x.
\left(x-16\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-16 mā te whakamahi i te āhuatanga tātai tohatoha.
x=16 x=1
Hei kimi otinga whārite, me whakaoti te x-16=0 me te -x+1=0.
8+\sqrt{36\times 16}=2\times 16
Whakakapia te 16 mō te x i te whārite 8+\sqrt{36x}=2x.
32=32
Whakarūnātia. Ko te uara x=16 kua ngata te whārite.
8+\sqrt{36\times 1}=2\times 1
Whakakapia te 1 mō te x i te whārite 8+\sqrt{36x}=2x.
14=2
Whakarūnātia. Ko te uara x=1 kāore e ngata ana ki te whārite.
x=16
Ko te whārite \sqrt{36x}=2x-8 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}