Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=6 ab=8\left(-9\right)=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 8y^{2}+ay+by-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-6 b=12
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(8y^{2}-6y\right)+\left(12y-9\right)
Tuhia anō te 8y^{2}+6y-9 hei \left(8y^{2}-6y\right)+\left(12y-9\right).
2y\left(4y-3\right)+3\left(4y-3\right)
Tauwehea te 2y i te tuatahi me te 3 i te rōpū tuarua.
\left(4y-3\right)\left(2y+3\right)
Whakatauwehea atu te kīanga pātahi 4y-3 mā te whakamahi i te āhuatanga tātai tohatoha.
8y^{2}+6y-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-6±\sqrt{6^{2}-4\times 8\left(-9\right)}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-6±\sqrt{36-4\times 8\left(-9\right)}}{2\times 8}
Pūrua 6.
y=\frac{-6±\sqrt{36-32\left(-9\right)}}{2\times 8}
Whakareatia -4 ki te 8.
y=\frac{-6±\sqrt{36+288}}{2\times 8}
Whakareatia -32 ki te -9.
y=\frac{-6±\sqrt{324}}{2\times 8}
Tāpiri 36 ki te 288.
y=\frac{-6±18}{2\times 8}
Tuhia te pūtakerua o te 324.
y=\frac{-6±18}{16}
Whakareatia 2 ki te 8.
y=\frac{12}{16}
Nā, me whakaoti te whārite y=\frac{-6±18}{16} ina he tāpiri te ±. Tāpiri -6 ki te 18.
y=\frac{3}{4}
Whakahekea te hautanga \frac{12}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
y=-\frac{24}{16}
Nā, me whakaoti te whārite y=\frac{-6±18}{16} ina he tango te ±. Tango 18 mai i -6.
y=-\frac{3}{2}
Whakahekea te hautanga \frac{-24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
8y^{2}+6y-9=8\left(y-\frac{3}{4}\right)\left(y-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{4} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
8y^{2}+6y-9=8\left(y-\frac{3}{4}\right)\left(y+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
8y^{2}+6y-9=8\times \frac{4y-3}{4}\left(y+\frac{3}{2}\right)
Tango \frac{3}{4} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8y^{2}+6y-9=8\times \frac{4y-3}{4}\times \frac{2y+3}{2}
Tāpiri \frac{3}{2} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8y^{2}+6y-9=8\times \frac{\left(4y-3\right)\left(2y+3\right)}{4\times 2}
Whakareatia \frac{4y-3}{4} ki te \frac{2y+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8y^{2}+6y-9=8\times \frac{\left(4y-3\right)\left(2y+3\right)}{8}
Whakareatia 4 ki te 2.
8y^{2}+6y-9=\left(4y-3\right)\left(2y+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te 8 me te 8.