Aromātai
46x^{3}-x^{2}+x-1
Kimi Pārōnaki e ai ki x
138x^{2}-2x+1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
8 x ^ { 3 } + 3 x - 1 x ^ { 2 } - 2 x + 38 x ^ { 3 } - 1
Tohaina
Kua tāruatia ki te papatopenga
8x^{3}+x-x^{2}+38x^{3}-1
Pahekotia te 3x me -2x, ka x.
46x^{3}+x-x^{2}-1
Pahekotia te 8x^{3} me 38x^{3}, ka 46x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}+x-x^{2}+38x^{3}-1)
Pahekotia te 3x me -2x, ka x.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{3}+x-x^{2}-1)
Pahekotia te 8x^{3} me 38x^{3}, ka 46x^{3}.
3\times 46x^{3-1}+x^{1-1}+2\left(-1\right)x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
138x^{3-1}+x^{1-1}+2\left(-1\right)x^{2-1}
Whakareatia 3 ki te 46.
138x^{2}+x^{1-1}+2\left(-1\right)x^{2-1}
Tango 1 mai i 3.
138x^{2}+x^{0}+2\left(-1\right)x^{2-1}
Tango 1 mai i 1.
138x^{2}+x^{0}-2x^{2-1}
Whakareatia 1 ki te 1.
138x^{2}+x^{0}-2x^{1}
Tango 1 mai i 2.
138x^{2}+x^{0}-2x
Mō tētahi kupu t, t^{1}=t.
138x^{2}+1-2x
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}