Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x^{3}+x-x^{2}+38x^{3}-1
Pahekotia te 3x me -2x, ka x.
46x^{3}+x-x^{2}-1
Pahekotia te 8x^{3} me 38x^{3}, ka 46x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(8x^{3}+x-x^{2}+38x^{3}-1)
Pahekotia te 3x me -2x, ka x.
\frac{\mathrm{d}}{\mathrm{d}x}(46x^{3}+x-x^{2}-1)
Pahekotia te 8x^{3} me 38x^{3}, ka 46x^{3}.
3\times 46x^{3-1}+x^{1-1}+2\left(-1\right)x^{2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
138x^{3-1}+x^{1-1}+2\left(-1\right)x^{2-1}
Whakareatia 3 ki te 46.
138x^{2}+x^{1-1}+2\left(-1\right)x^{2-1}
Tango 1 mai i 3.
138x^{2}+x^{0}+2\left(-1\right)x^{2-1}
Tango 1 mai i 1.
138x^{2}+x^{0}-2x^{2-1}
Whakareatia 1 ki te 1.
138x^{2}+x^{0}-2x^{1}
Tango 1 mai i 2.
138x^{2}+x^{0}-2x
Mō tētahi kupu t, t^{1}=t.
138x^{2}+1-2x
Mō tētahi kupu t mahue te 0, t^{0}=1.