Whakaoti mō x
x=-\frac{1}{8}=-0.125
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=8\left(-1\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 8x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-8 2,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
1-8=-7 2-4=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(8x^{2}-8x\right)+\left(x-1\right)
Tuhia anō te 8x^{2}-7x-1 hei \left(8x^{2}-8x\right)+\left(x-1\right).
8x\left(x-1\right)+x-1
Whakatauwehea atu 8x i te 8x^{2}-8x.
\left(x-1\right)\left(8x+1\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{8}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 8x+1=0.
8x^{2}-7x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -7 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 8\left(-1\right)}}{2\times 8}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-32\left(-1\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\times 8}
Whakareatia -32 ki te -1.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\times 8}
Tāpiri 49 ki te 32.
x=\frac{-\left(-7\right)±9}{2\times 8}
Tuhia te pūtakerua o te 81.
x=\frac{7±9}{2\times 8}
Ko te tauaro o -7 ko 7.
x=\frac{7±9}{16}
Whakareatia 2 ki te 8.
x=\frac{16}{16}
Nā, me whakaoti te whārite x=\frac{7±9}{16} ina he tāpiri te ±. Tāpiri 7 ki te 9.
x=1
Whakawehe 16 ki te 16.
x=-\frac{2}{16}
Nā, me whakaoti te whārite x=\frac{7±9}{16} ina he tango te ±. Tango 9 mai i 7.
x=-\frac{1}{8}
Whakahekea te hautanga \frac{-2}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{1}{8}
Kua oti te whārite te whakatau.
8x^{2}-7x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
8x^{2}-7x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
8x^{2}-7x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
8x^{2}-7x=1
Tango -1 mai i 0.
\frac{8x^{2}-7x}{8}=\frac{1}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}-\frac{7}{8}x=\frac{1}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
Whakawehea te -\frac{7}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{16}. Nā, tāpiria te pūrua o te -\frac{7}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{1}{8}+\frac{49}{256}
Pūruatia -\frac{7}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{81}{256}
Tāpiri \frac{1}{8} ki te \frac{49}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{16}\right)^{2}=\frac{81}{256}
Tauwehea x^{2}-\frac{7}{8}x+\frac{49}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{16}=\frac{9}{16} x-\frac{7}{16}=-\frac{9}{16}
Whakarūnātia.
x=1 x=-\frac{1}{8}
Me tāpiri \frac{7}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}