Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x^{2}-6x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-4\right)}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-4\right)}}{2\times 8}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-4\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-6\right)±\sqrt{36+128}}{2\times 8}
Whakareatia -32 ki te -4.
x=\frac{-\left(-6\right)±\sqrt{164}}{2\times 8}
Tāpiri 36 ki te 128.
x=\frac{-\left(-6\right)±2\sqrt{41}}{2\times 8}
Tuhia te pūtakerua o te 164.
x=\frac{6±2\sqrt{41}}{2\times 8}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{41}}{16}
Whakareatia 2 ki te 8.
x=\frac{2\sqrt{41}+6}{16}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{41}}{16} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{41}.
x=\frac{\sqrt{41}+3}{8}
Whakawehe 6+2\sqrt{41} ki te 16.
x=\frac{6-2\sqrt{41}}{16}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{41}}{16} ina he tango te ±. Tango 2\sqrt{41} mai i 6.
x=\frac{3-\sqrt{41}}{8}
Whakawehe 6-2\sqrt{41} ki te 16.
8x^{2}-6x-4=8\left(x-\frac{\sqrt{41}+3}{8}\right)\left(x-\frac{3-\sqrt{41}}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3+\sqrt{41}}{8} mō te x_{1} me te \frac{3-\sqrt{41}}{8} mō te x_{2}.