Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(4x^{2}-11x+6\right)
Tauwehea te 2.
a+b=-11 ab=4\times 6=24
Whakaarohia te 4x^{2}-11x+6. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-8 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(4x^{2}-8x\right)+\left(-3x+6\right)
Tuhia anō te 4x^{2}-11x+6 hei \left(4x^{2}-8x\right)+\left(-3x+6\right).
4x\left(x-2\right)-3\left(x-2\right)
Tauwehea te 4x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-2\right)\left(4x-3\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x-2\right)\left(4x-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
8x^{2}-22x+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\times 12}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 8\times 12}}{2\times 8}
Pūrua -22.
x=\frac{-\left(-22\right)±\sqrt{484-32\times 12}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-22\right)±\sqrt{484-384}}{2\times 8}
Whakareatia -32 ki te 12.
x=\frac{-\left(-22\right)±\sqrt{100}}{2\times 8}
Tāpiri 484 ki te -384.
x=\frac{-\left(-22\right)±10}{2\times 8}
Tuhia te pūtakerua o te 100.
x=\frac{22±10}{2\times 8}
Ko te tauaro o -22 ko 22.
x=\frac{22±10}{16}
Whakareatia 2 ki te 8.
x=\frac{32}{16}
Nā, me whakaoti te whārite x=\frac{22±10}{16} ina he tāpiri te ±. Tāpiri 22 ki te 10.
x=2
Whakawehe 32 ki te 16.
x=\frac{12}{16}
Nā, me whakaoti te whārite x=\frac{22±10}{16} ina he tango te ±. Tango 10 mai i 22.
x=\frac{3}{4}
Whakahekea te hautanga \frac{12}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
8x^{2}-22x+12=8\left(x-2\right)\left(x-\frac{3}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te \frac{3}{4} mō te x_{2}.
8x^{2}-22x+12=8\left(x-2\right)\times \frac{4x-3}{4}
Tango \frac{3}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}-22x+12=2\left(x-2\right)\left(4x-3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 8 me te 4.