Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x^{2}-14x=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
8x^{2}-14x-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
8x^{2}-14x-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 8\left(-6\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -14 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 8\left(-6\right)}}{2\times 8}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-32\left(-6\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-14\right)±\sqrt{196+192}}{2\times 8}
Whakareatia -32 ki te -6.
x=\frac{-\left(-14\right)±\sqrt{388}}{2\times 8}
Tāpiri 196 ki te 192.
x=\frac{-\left(-14\right)±2\sqrt{97}}{2\times 8}
Tuhia te pūtakerua o te 388.
x=\frac{14±2\sqrt{97}}{2\times 8}
Ko te tauaro o -14 ko 14.
x=\frac{14±2\sqrt{97}}{16}
Whakareatia 2 ki te 8.
x=\frac{2\sqrt{97}+14}{16}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{97}}{16} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{97}.
x=\frac{\sqrt{97}+7}{8}
Whakawehe 14+2\sqrt{97} ki te 16.
x=\frac{14-2\sqrt{97}}{16}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{97}}{16} ina he tango te ±. Tango 2\sqrt{97} mai i 14.
x=\frac{7-\sqrt{97}}{8}
Whakawehe 14-2\sqrt{97} ki te 16.
x=\frac{\sqrt{97}+7}{8} x=\frac{7-\sqrt{97}}{8}
Kua oti te whārite te whakatau.
8x^{2}-14x=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{8x^{2}-14x}{8}=\frac{6}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\left(-\frac{14}{8}\right)x=\frac{6}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{7}{4}x=\frac{6}{8}
Whakahekea te hautanga \frac{-14}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{4}x=\frac{3}{4}
Whakahekea te hautanga \frac{6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{7}{8}\right)^{2}
Whakawehea te -\frac{7}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{8}. Nā, tāpiria te pūrua o te -\frac{7}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{3}{4}+\frac{49}{64}
Pūruatia -\frac{7}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{97}{64}
Tāpiri \frac{3}{4} ki te \frac{49}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{8}\right)^{2}=\frac{97}{64}
Tauwehea x^{2}-\frac{7}{4}x+\frac{49}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{97}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{8}=\frac{\sqrt{97}}{8} x-\frac{7}{8}=-\frac{\sqrt{97}}{8}
Whakarūnātia.
x=\frac{\sqrt{97}+7}{8} x=\frac{7-\sqrt{97}}{8}
Me tāpiri \frac{7}{8} ki ngā taha e rua o te whārite.